Spaces:
Sleeping
Sleeping
Commit
·
31caba0
1
Parent(s):
f177d8d
ajout fichier main.py
Browse files- .gitignore +4 -0
- main.py +142 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
.venv
|
3 |
+
__pycache__/
|
4 |
+
.idea
|
main.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import torch
|
3 |
+
from transformers.pipelines.audio_utils import ffmpeg_microphone_live
|
4 |
+
from huggingface_hub import HfFolder, InferenceClient
|
5 |
+
import requests
|
6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
7 |
+
from datasets import load_dataset
|
8 |
+
import sounddevice as sd
|
9 |
+
import sys
|
10 |
+
import os
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import gradio as gr
|
13 |
+
import warnings
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
+
|
18 |
+
warnings.filterwarnings("ignore",
|
19 |
+
message="At least one mel filter has all zero values.*",
|
20 |
+
category=UserWarning)
|
21 |
+
|
22 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
23 |
+
classifier = pipeline(
|
24 |
+
"audio-classification",
|
25 |
+
model="MIT/ast-finetuned-speech-commands-v2",
|
26 |
+
device=device
|
27 |
+
)
|
28 |
+
|
29 |
+
def launch_fn(wake_word="marvin", prob_threshold=0.5, chunk_length_s=2.0, stream_chunk_s=0.25, debug=False):
|
30 |
+
if wake_word not in classifier.model.config.label2id.keys():
|
31 |
+
raise ValueError(
|
32 |
+
f"Wake word {wake_word} not in set of valid class labels, pick a wake word in the set {classifier.model.config.label2id.keys()}."
|
33 |
+
)
|
34 |
+
|
35 |
+
sampling_rate = classifier.feature_extractor.sampling_rate
|
36 |
+
|
37 |
+
mic = ffmpeg_microphone_live(
|
38 |
+
sampling_rate=sampling_rate,
|
39 |
+
chunk_length_s=chunk_length_s,
|
40 |
+
stream_chunk_s=stream_chunk_s,
|
41 |
+
)
|
42 |
+
|
43 |
+
print("Listening for wake word...")
|
44 |
+
for prediction in classifier(mic):
|
45 |
+
prediction = prediction[0]
|
46 |
+
if debug:
|
47 |
+
print(prediction)
|
48 |
+
if prediction["label"] == wake_word:
|
49 |
+
if prediction["score"] > prob_threshold:
|
50 |
+
return True
|
51 |
+
|
52 |
+
transcriber = pipeline(
|
53 |
+
"automatic-speech-recognition", model="openai/whisper-base.en", device=device
|
54 |
+
)
|
55 |
+
|
56 |
+
def transcribe(chunk_length_s=5.0, stream_chunk_s=1.0):
|
57 |
+
sampling_rate = transcriber.feature_extractor.sampling_rate
|
58 |
+
|
59 |
+
mic = ffmpeg_microphone_live(
|
60 |
+
sampling_rate=sampling_rate,
|
61 |
+
chunk_length_s=chunk_length_s,
|
62 |
+
stream_chunk_s=stream_chunk_s,
|
63 |
+
)
|
64 |
+
|
65 |
+
print("Start speaking...")
|
66 |
+
for item in transcriber(mic, generate_kwargs={"max_new_tokens": 128}):
|
67 |
+
sys.stdout.write("\033[K")
|
68 |
+
print(item["text"], end="\r")
|
69 |
+
if not item["partial"][0]:
|
70 |
+
break
|
71 |
+
|
72 |
+
return item["text"]
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
client = InferenceClient(
|
77 |
+
provider="fireworks-ai",
|
78 |
+
api_key=HF_TOKEN
|
79 |
+
)
|
80 |
+
|
81 |
+
def query(text, model_id="meta-llama/Llama-3.1-8B-Instruct"):
|
82 |
+
try:
|
83 |
+
completion = client.chat.completions.create(
|
84 |
+
model=model_id,
|
85 |
+
messages=[{"role": "user", "content": text}]
|
86 |
+
)
|
87 |
+
return completion.choices[0].message.content
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Erreur: {str(e)}")
|
91 |
+
return None
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
96 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
97 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
98 |
+
|
99 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
100 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
101 |
+
|
102 |
+
|
103 |
+
def synthesise(text):
|
104 |
+
input_ids = processor(text=text, return_tensors="pt")["input_ids"]
|
105 |
+
speech = model.generate_speech(
|
106 |
+
input_ids.to(device),
|
107 |
+
speaker_embeddings.to(device),
|
108 |
+
vocoder=vocoder
|
109 |
+
)
|
110 |
+
return speech.cpu()
|
111 |
+
|
112 |
+
# launch_fn(debug=True)
|
113 |
+
# transcription = transcribe()
|
114 |
+
# response = query(transcription)
|
115 |
+
# audio = synthesise(response)
|
116 |
+
#
|
117 |
+
# sd.play(audio.numpy(), 16000)
|
118 |
+
# sd.wait()
|
119 |
+
|
120 |
+
# Interface Gradio
|
121 |
+
def assistant_vocal_interface():
|
122 |
+
launch_fn(debug=True)
|
123 |
+
transcription = transcribe()
|
124 |
+
response = query(transcription)
|
125 |
+
audio = synthesise(response)
|
126 |
+
return transcription, response, (16000, audio.numpy())
|
127 |
+
|
128 |
+
with gr.Blocks(title="Assistant Vocal") as demo:
|
129 |
+
gr.Markdown("## Assistant vocal : détection, transcription, génération et synthèse")
|
130 |
+
|
131 |
+
start_btn = gr.Button("Démarrer l'assistant")
|
132 |
+
transcription_box = gr.Textbox(label="Transcription")
|
133 |
+
response_box = gr.Textbox(label="Réponse IA")
|
134 |
+
audio_output = gr.Audio(label="Synthèse vocale", type="numpy", autoplay=True)
|
135 |
+
|
136 |
+
start_btn.click(
|
137 |
+
assistant_vocal_interface,
|
138 |
+
inputs=[],
|
139 |
+
outputs=[transcription_box, response_box, audio_output]
|
140 |
+
)
|
141 |
+
|
142 |
+
demo.launch(share=True)
|