Spaces:
Runtime error
Runtime error
| from docx import Document | |
| import json | |
| import datetime | |
| import tempfile | |
| from pathlib import Path | |
| from unidecode import unidecode | |
| from langchain_community.document_loaders import JSONLoader, UnstructuredWordDocumentLoader, WebBaseLoader, AsyncHtmlLoader | |
| from langchain_community.document_transformers import Html2TextTransformer | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI | |
| import google.generativeai as genai | |
| from tqdm import tqdm | |
| from pathlib import Path | |
| import shutil | |
| import requests | |
| from bs4 import BeautifulSoup | |
| import os | |
| from langchain_docling import DoclingLoader#, ExportType | |
| from langchain_docling.loader import ExportType | |
| import logging | |
| # logging.getLogger("langchain").setLevel(logging.ERROR) | |
| logging.getLogger().setLevel(logging.ERROR) | |
| import re | |
| import ast | |
| from langchain.schema import Document | |
| # from file_loader import get_vectorstore | |
| key = os.getenv("GOOGLE_API_KEY") | |
| # import asyncio từ | |
| # from urllib.parse import urljoin | |
| # from playwright.async_api import async_playwright | |
| # from langchain_community.document_loaders import AsyncHtmlLoader | |
| # from langchain_community.document_transformers import Html2TextTransformer | |
| # from tqdm.asyncio import tqdm | |
| # async def _fetch_urls(base_url): | |
| # """Extract all links from a JavaScript-rendered webpage.""" | |
| # async with async_playwright() as p: | |
| # try: | |
| # browser = await p.chromium.launch(headless=True) | |
| # page = await browser.new_page() | |
| # await page.goto(base_url) | |
| # await page.wait_for_load_state("networkidle") | |
| # urls = set() | |
| # links = await page.locator("a").all() | |
| # for link in links: | |
| # href = await link.get_attribute("href") | |
| # if href and "#" not in href: | |
| # full_url = urljoin(base_url, href) | |
| # if full_url.startswith(base_url): | |
| # urls.add(full_url) | |
| # await browser.close() | |
| # except Exception as e: | |
| # print(f"⚠️ Không thể truy cập {base_url}: {e}") | |
| # return [] # Trả về danh sách rỗng nếu gặp lỗi | |
| # return list(urls) | |
| # async def _fetch_web_content(urls): | |
| # """Fetch HTML content and convert it to text, with a progress bar.""" | |
| # docs = [] | |
| # progress_bar = tqdm(total=len(urls), desc="Scraping Pages", unit="page") | |
| # for page_url in urls: | |
| # try: | |
| # loader = AsyncHtmlLoader(page_url) | |
| # html2text = Html2TextTransformer() | |
| # html = await loader.aload() | |
| # doc = html2text.transform_documents(html) | |
| # docs.extend(doc) | |
| # except Exception as e: | |
| # print(f"Error loading {page_url}: {e}") | |
| # progress_bar.update(1) # Update progress bar | |
| # progress_bar.close() | |
| # return docs | |
| # def scrape_website(base_urls): | |
| # """ | |
| # Scrapes a list of base URLs and extracts their content. | |
| # Includes a progress bar for tracking. | |
| # """ | |
| # async def _main(): | |
| # all_urls = [] | |
| # for base_url in base_urls: | |
| # urls = await _fetch_urls(base_url) | |
| # all_urls.extend(urls) | |
| # docs = await _fetch_web_content(all_urls) | |
| # return docs | |
| # return asyncio.run(_main) | |
| # class ChunkerWrapper: | |
| # def __init__(self, splitter): | |
| # self.splitter = splitter | |
| # def chunk(self, text): | |
| # # Use the 'split_text' method of the splitter to divide the text | |
| # return self.splitter.split_text(text) | |
| # def get_web_documents(base_urls=['https://nct.neu.edu.vn/']): | |
| # """Tải nội dung từ danh sách URL với thanh tiến trình""" | |
| # docs = [] | |
| # text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100) | |
| # chunker = ChunkerWrapper(text_splitter) | |
| # for page_url in tqdm(base_urls, desc="Đang tải trang", unit="url"): | |
| # try: | |
| # # loader = WebBaseLoader(page_url) | |
| # loader = DoclingLoader(file_path=page_url,chunker=chunker # This will break your doc into manageable pieces. | |
| # ) | |
| # html = loader.load() | |
| # doc = html | |
| # docs.extend(doc) | |
| # except Exception as e: | |
| # print(f"Lỗi khi tải {page_url}: {e}") | |
| # print(f"Tải thành công {len(docs)} trang.") | |
| # return docs | |
| # def load_text_data(file_path): | |
| # """Tải nội dung văn bản từ file DOCX (đã loại bảng).""" | |
| # # cleaned_file = Document(file_path) #remove_tables_from_docx(file_path) | |
| # text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100) | |
| # chunker = ChunkerWrapper(text_splitter) | |
| # return DoclingLoader(file_path=file_path, chunker=chunker # This will break your doc into manageable pieces. | |
| # ).load() | |
| # def extract_metadata(input_string): | |
| # # Use regex to find the content inside curly braces | |
| # match = re.search(r'\{.*?\}', input_string) | |
| # if match: | |
| # metadata_str = match.group() # This returns the substring with the braces | |
| # try: | |
| # # Safely evaluate the string to a dictionary | |
| # new_metadata = ast.literal_eval(metadata_str) | |
| # except Exception as e: | |
| # print(f"Error evaluating metadata: {e}") | |
| # new_metadata = {} | |
| # else: | |
| # new_metadata = None | |
| # return new_metadata | |
| def extract_metadata(response_string): | |
| # Tìm tất cả các dictionary trong chuỗi đầu vào | |
| matches = re.findall(r'\{.*?\}', response_string, re.DOTALL) | |
| if not matches: | |
| return None | |
| smallest_dict = None | |
| min_length = float("inf") | |
| for match in matches: | |
| try: | |
| parsed_dict = ast.literal_eval(match) # Chuyển đổi string thành dictionary | |
| if isinstance(parsed_dict, dict): | |
| dict_length = len(str(parsed_dict)) # Độ dài chuỗi của dict | |
| if dict_length < min_length: | |
| smallest_dict = parsed_dict | |
| min_length = dict_length | |
| except Exception: | |
| continue # Bỏ qua nếu không phải dictionary hợp lệ | |
| return smallest_dict | |
| # # Example usage: | |
| # input_str = "Some random text before and then {'a': 'abc', 'b': 'bcd'} and some random text after." | |
| # metadata = extract_metadata(input_str) | |
| # print(metadata) | |
| def define_metadata(input_text): | |
| condition1 = 'Chương trình' | |
| condition2 = 'Đề án' | |
| condition3 = 'Đề cương' | |
| condition4 = ['Trí tuệ nhân tạo', | |
| 'Toán kinh tế', | |
| 'Thống kê kinh tế', | |
| 'Phân tích dữ liệu trong Kinh tế', | |
| 'Kỹ thuật phần mềm', | |
| 'Khoa học máy tính', | |
| 'Khoa học dữ liệu', | |
| 'Hệ thống thông tin quản lý', | |
| 'Hệ thống thông tin', | |
| 'Định phí bảo hiểm và Quản trị rủi ro', | |
| 'Chương trình Công nghệ thông tin', | |
| 'An toàn thông tin'] | |
| #cond1 cond2 la str, con3 la list ten cac nganh | |
| result = {} | |
| if condition3 in input_text: | |
| result["Tai lieu ve"] = 'De cuong' | |
| elif condition1 in input_text: | |
| result["Tai lieu ve"] = 'Chuong trinh dao tao' | |
| elif condition2 in input_text: | |
| result["Tai lieu ve"] = 'De an' | |
| for cond in condition4: | |
| if cond in input_text: | |
| result["Nganh"] = cond | |
| return result | |
| def update_documents_metadata(documents, new_metadata): | |
| updated_documents = [] | |
| for doc in documents: | |
| # Preserve the original 'source' | |
| original_source = doc.metadata.get("source") | |
| # Update metadata with new key-value pairs | |
| doc.metadata.update(new_metadata) | |
| # Ensure the 'source' remains unchanged | |
| if original_source: | |
| doc.metadata["source"] = original_source | |
| updated_documents.append(doc) | |
| return updated_documents | |
| def get_web_documents(base_urls=['https://nct.neu.edu.vn/']): | |
| """Fetch content from a list of URLs with a progress bar.""" | |
| docs = [] | |
| for page_url in tqdm(base_urls, desc="Loading page", unit="url"): | |
| try: | |
| loader = DoclingLoader( | |
| file_path=page_url, | |
| export_type=ExportType.DOC_CHUNKS # Enable internal chunking | |
| ) | |
| doc = loader.load() | |
| docs.extend(doc) | |
| except Exception as e: | |
| print(f"Error loading {page_url}: {e}") | |
| print(f"Successfully loaded {len(docs)} documents.") | |
| return docs | |
| def load_text_data(file_path): | |
| """Load text content from a DOCX file (tables removed).""" | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=2500) | |
| loader = DoclingLoader( | |
| file_path=file_path, | |
| export_type=ExportType.MARKDOWN, # Enable internal chunking, | |
| chunker = text_splitter, | |
| # convert_kwargs={"input_format": "docx"} # Specify the input format | |
| ) | |
| docs = loader.load() | |
| chunks = text_splitter.split_documents(docs) | |
| # You can wrap each chunk back into a Document if needed. | |
| return chunks | |
| def log_message(messages, filename="chat_log.txt"): | |
| """Ghi lịch sử tin nhắn vào file log""" | |
| with open(filename, "a", encoding="utf-8") as f: | |
| log_entry = { | |
| "timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
| "conversation": messages | |
| } | |
| f.write(json.dumps(log_entry, ensure_ascii=False) + "\n") | |
| def remove_tables_from_docx(file_path): | |
| """Tạo bản sao của file DOCX nhưng loại bỏ tất cả bảng bên trong.""" | |
| doc = Document(file_path) | |
| new_doc = Document() | |
| for para in doc.paragraphs: | |
| new_doc.add_paragraph(para.text) | |
| # 📌 Lưu vào file tạm, đảm bảo đóng đúng cách | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as temp_file: | |
| temp_path = temp_file.name | |
| new_doc.save(temp_path) | |
| return temp_path # ✅ Trả về đường dẫn file mới, không làm hỏng file gốc | |
| def extract_tables_from_docx(file_path): | |
| doc = Document(file_path) | |
| tables = [] | |
| all_paragraphs = [p.text.strip() for p in doc.paragraphs if p.text.strip()] # Lấy tất cả đoạn văn bản không rỗng | |
| table_index = 0 | |
| para_index = 0 | |
| table_positions = [] | |
| # Xác định vị trí của bảng trong tài liệu | |
| for element in doc.element.body: | |
| if element.tag.endswith("tbl"): | |
| table_positions.append((table_index, para_index)) | |
| table_index += 1 | |
| elif element.tag.endswith("p"): | |
| para_index += 1 | |
| for idx, (table_idx, para_idx) in enumerate(table_positions): | |
| data = [] | |
| for row in doc.tables[table_idx].rows: | |
| data.append([cell.text.strip() for cell in row.cells]) | |
| if len(data) > 1: # Chỉ lấy bảng có dữ liệu | |
| # Lấy 5 dòng trước và sau bảng | |
| related_start = max(0, para_idx - 5) | |
| related_end = min(len(all_paragraphs), para_idx + 5) | |
| related_text = all_paragraphs[related_start:related_end] | |
| tables.append({"table": idx + 1, "content": data, "related": related_text}) | |
| return tables | |
| def convert_to_json(tables): | |
| structured_data = {} | |
| for table in tables: | |
| headers = [unidecode(h) for h in table["content"][0]] # Bỏ dấu ở headers | |
| rows = [[unidecode(cell) for cell in row] for row in table["content"][1:]] # Bỏ dấu ở dữ liệu | |
| json_table = [dict(zip(headers, row)) for row in rows if len(row) == len(headers)] | |
| related_text = [unidecode(text) for text in table["related"]] # Bỏ dấu ở văn bản liên quan | |
| structured_data[table["table"]] = { | |
| "content": json_table, | |
| "related": related_text | |
| } | |
| return json.dumps(structured_data, indent=4, ensure_ascii=False) | |
| def save_json_to_file(json_data, output_path): | |
| with open(output_path, 'w', encoding='utf-8') as f: | |
| json.dump(json.loads(json_data), f, ensure_ascii=False, indent=4) | |
| # def load_json_with_langchain(json_path): | |
| # loader = JSONLoader(file_path=json_path, jq_schema='.. | .content?', text_content=False) | |
| # data = loader.load() | |
| # # # Kiểm tra xem dữ liệu có bị lỗi không | |
| # # print("Sample Data:", data[:2]) # In thử 2 dòng đầu | |
| # return data | |
| def load_json_manually(json_path): | |
| with open(json_path, 'r', encoding='utf-8') as f: | |
| data = json.load(f) | |
| return data | |
| def load_table_data(file_path, output_json_path): | |
| tables = extract_tables_from_docx(file_path) | |
| json_output = convert_to_json(tables) | |
| save_json_to_file(json_output, output_json_path) | |
| table_data = load_json_manually(output_json_path) | |
| return table_data | |
| def get_splits(file_path, output_json_path): | |
| # table_data = load_table_data(file_path, output_json_path) | |
| text_data = load_text_data(file_path) | |
| # Chia nhỏ văn bản | |
| # json_splitter = RecursiveJsonSplitter(max_chunk_size = 1000) | |
| # text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=250) | |
| # table_splits = json_splitter.create_documents(texts=[table_data]) | |
| # text_splits = text_splitter.split_documents(text_data) | |
| # all_splits = table_splits + text_splits DoclingLoader | |
| return text_data #text_splits | |
| def get_json_splits_only(file_path): | |
| table_data = load_json_manually(file_path) | |
| def remove_accents(obj): #xoa dau tieng viet | |
| if isinstance(obj, str): | |
| return unidecode(obj) | |
| elif isinstance(obj, list): | |
| return [remove_accents(item) for item in obj] | |
| elif isinstance(obj, dict): | |
| return {remove_accents(k): remove_accents(v) for k, v in obj.items()} | |
| return obj | |
| cleaned_data = remove_accents(table_data) | |
| wrapped_data = {"data": cleaned_data} if isinstance(cleaned_data, list) else cleaned_data | |
| json_splitter = RecursiveJsonSplitter(max_chunk_size = 2000) | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=100) | |
| table_splits = json_splitter.create_documents(texts=[wrapped_data]) | |
| table_splits = text_splitter.split_documents(table_splits) | |
| return table_splits | |
| def list_docx_files(folder_path): | |
| """List all DOCX and DOC files in the given folder (including subfolders).""" | |
| return [str(file) for file in Path(folder_path).rglob("*.docx")] + \ | |
| [str(file) for file in Path(folder_path).rglob("*.doc")] | |
| def prompt_order(queries): | |
| text = 'IMPORTANT: Here is the questions of user in order, use that and the context above to know the best answer:\n' | |
| i = 0 | |
| for q in queries: | |
| i += 1 | |
| text += f'Question {i}: {str(q)}\n' | |
| return text |