Spaces:
Running
on
Zero
Running
on
Zero
clear
Browse files- app.py +0 -2
- omini_control/flux_conceptrol_pipeline.py +0 -6
app.py
CHANGED
@@ -203,7 +203,6 @@ def generate(
|
|
203 |
) -> np.ndarray:
|
204 |
global pipeline
|
205 |
change_model_fn(model_name)
|
206 |
-
print(type(image))
|
207 |
if isinstance(pipeline, FluxConceptrolPipeline):
|
208 |
images = pipeline(
|
209 |
prompt=prompt,
|
@@ -370,7 +369,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
370 |
# inputs=gr.Number(1, visible=False),
|
371 |
# outputs=generate_button,
|
372 |
# )
|
373 |
-
print(type(image_prompt))
|
374 |
inputs = [
|
375 |
prompt,
|
376 |
textual_concept,
|
|
|
203 |
) -> np.ndarray:
|
204 |
global pipeline
|
205 |
change_model_fn(model_name)
|
|
|
206 |
if isinstance(pipeline, FluxConceptrolPipeline):
|
207 |
images = pipeline(
|
208 |
prompt=prompt,
|
|
|
369 |
# inputs=gr.Number(1, visible=False),
|
370 |
# outputs=generate_button,
|
371 |
# )
|
|
|
372 |
inputs = [
|
373 |
prompt,
|
374 |
textual_concept,
|
omini_control/flux_conceptrol_pipeline.py
CHANGED
@@ -194,8 +194,6 @@ class FluxConceptrolPipeline(FluxPipeline):
|
|
194 |
else:
|
195 |
batch_size = prompt_embeds.shape[0]
|
196 |
|
197 |
-
print(batch_size)
|
198 |
-
|
199 |
device = self._execution_device
|
200 |
|
201 |
lora_scale = (
|
@@ -292,10 +290,6 @@ class FluxConceptrolPipeline(FluxPipeline):
|
|
292 |
guidance = guidance.expand(latents.shape[0])
|
293 |
else:
|
294 |
guidance = None
|
295 |
-
print("condition_latents.shape:", condition_latents.shape)
|
296 |
-
print("latent.shape:", latents.shape)
|
297 |
-
print("prompt_embeds.shape", prompt_embeds.shape)
|
298 |
-
print("condition_ids.shape", condition_ids.shape)
|
299 |
noise_pred = tranformer_forward(
|
300 |
self.transformer,
|
301 |
model_config=model_config,
|
|
|
194 |
else:
|
195 |
batch_size = prompt_embeds.shape[0]
|
196 |
|
|
|
|
|
197 |
device = self._execution_device
|
198 |
|
199 |
lora_scale = (
|
|
|
290 |
guidance = guidance.expand(latents.shape[0])
|
291 |
else:
|
292 |
guidance = None
|
|
|
|
|
|
|
|
|
293 |
noise_pred = tranformer_forward(
|
294 |
self.transformer,
|
295 |
model_config=model_config,
|