Gül Sena Altıntaş
commited on
Commit
·
6383574
1
Parent(s):
fb396ec
Fixed hf issue, fixed OOM
Browse files- app.py +38 -3
- serve_on_killarney.sh +9 -14
app.py
CHANGED
@@ -10,12 +10,35 @@ import logging
|
|
10 |
from typing import List, Dict, Any
|
11 |
import gc
|
12 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Set up logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
18 |
-
print("hf_toke_fromglobal", os.environ.get("HF_TOKEN"))
|
19 |
# Model configurations - maps display names to HF model paths
|
20 |
PREDEFINED_MODELS = [
|
21 |
"meta-llama/Llama-3.2-1B",
|
@@ -92,9 +115,22 @@ def setup_tokenizer(model_path):
|
|
92 |
return tokenizer
|
93 |
|
94 |
|
95 |
-
def load_model_and_tokenizer(model_path,
|
96 |
"""Load model and tokenizer with caching"""
|
97 |
global model_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
if use_cache and model_path in model_cache:
|
100 |
logger.info(f"Using cached model: {model_path}")
|
@@ -125,7 +161,6 @@ def load_model_and_tokenizer(model_path, use_cache=True, progress_callback=None)
|
|
125 |
progress_callback(0.5, f"🧠 Loading model weights for {model_path}... (this may take a while)")
|
126 |
|
127 |
logger.info(os.getcwd())
|
128 |
-
logger.info("hf token", os.environ.get("HF_TOKEN"))
|
129 |
# Load model with appropriate settings
|
130 |
model = AutoModelForCausalLM.from_pretrained(
|
131 |
model_path,
|
|
|
10 |
from typing import List, Dict, Any
|
11 |
import gc
|
12 |
import os
|
13 |
+
import psutil
|
14 |
+
|
15 |
+
|
16 |
+
def get_memory_usage():
|
17 |
+
"""Return (gpu_mem_used_MB, gpu_mem_total_MB, ram_used_MB, ram_total_MB)"""
|
18 |
+
# System RAM
|
19 |
+
vm = psutil.virtual_memory()
|
20 |
+
ram_used_mb = vm.used / (1024 ** 2)
|
21 |
+
ram_total_mb = vm.total / (1024 ** 2)
|
22 |
+
|
23 |
+
# GPU memory
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
gpu_idx = torch.cuda.current_device()
|
26 |
+
torch.cuda.synchronize()
|
27 |
+
gpu_mem_alloc = torch.cuda.memory_allocated(gpu_idx) / (1024 ** 2)
|
28 |
+
gpu_mem_reserved = torch.cuda.memory_reserved(gpu_idx) / (1024 ** 2)
|
29 |
+
gpu_mem_total = torch.cuda.get_device_properties(gpu_idx).total_memory / (1024 ** 2)
|
30 |
+
gpu_mem_used = max(gpu_mem_alloc, gpu_mem_reserved) # safe estimate
|
31 |
+
else:
|
32 |
+
gpu_mem_used = 0
|
33 |
+
gpu_mem_total = 0
|
34 |
+
|
35 |
+
return gpu_mem_used, gpu_mem_total, ram_used_mb, ram_total_mb
|
36 |
+
|
37 |
|
38 |
# Set up logging
|
39 |
logging.basicConfig(level=logging.INFO)
|
40 |
logger = logging.getLogger(__name__)
|
41 |
|
|
|
42 |
# Model configurations - maps display names to HF model paths
|
43 |
PREDEFINED_MODELS = [
|
44 |
"meta-llama/Llama-3.2-1B",
|
|
|
115 |
return tokenizer
|
116 |
|
117 |
|
118 |
+
def load_model_and_tokenizer(model_path, progress_callback=None):
|
119 |
"""Load model and tokenizer with caching"""
|
120 |
global model_cache
|
121 |
+
|
122 |
+
# Decide caching strategy based on memory usage
|
123 |
+
gpu_used, gpu_total, ram_used, ram_total = get_memory_usage()
|
124 |
+
logger.info(f"Current GPU memory: {gpu_used:.1f}/{gpu_total:.1f} MB")
|
125 |
+
logger.info(f"Current RAM: {ram_used:.1f}/{ram_total:.1f} MB")
|
126 |
+
|
127 |
+
use_cache = not (
|
128 |
+
(gpu_total > 0 and gpu_used / gpu_total > 0.8) or
|
129 |
+
(ram_used / ram_total > 0.8)
|
130 |
+
) or model_path in model_cache
|
131 |
+
if not use_cache:
|
132 |
+
logger.warning("High memory usage detected — disabling model cache.")
|
133 |
+
|
134 |
|
135 |
if use_cache and model_path in model_cache:
|
136 |
logger.info(f"Using cached model: {model_path}")
|
|
|
161 |
progress_callback(0.5, f"🧠 Loading model weights for {model_path}... (this may take a while)")
|
162 |
|
163 |
logger.info(os.getcwd())
|
|
|
164 |
# Load model with appropriate settings
|
165 |
model = AutoModelForCausalLM.from_pretrained(
|
166 |
model_path,
|
serve_on_killarney.sh
CHANGED
@@ -15,7 +15,8 @@ NUM_GPUS=1
|
|
15 |
NODES=1
|
16 |
NTASKS_PER_NODE=1
|
17 |
CPUS_PER_TASK=4
|
18 |
-
|
|
|
19 |
TIME="02:00:00"
|
20 |
GRADIO_PORT=7861
|
21 |
script_location="$APP_DIR/$SCRIPT_NAME"
|
@@ -62,6 +63,9 @@ module load slurm/killarney/24.05.7 StdEnv/2023 gcc/13.3 openmpi/5.0.3 cuda/12.6
|
|
62 |
|
63 |
# Activate virtual environment
|
64 |
source "${ENV_PATH}"
|
|
|
|
|
|
|
65 |
|
66 |
# Set up environment
|
67 |
export GRADIO_SERVER_NAME="0.0.0.0"
|
@@ -70,6 +74,7 @@ export GRADIO_SERVER_PORT=$GRADIO_PORT
|
|
70 |
# Start Gradio app
|
71 |
echo "Starting Gradio app on port ${GRADIO_PORT}..."
|
72 |
gradio "${APP_PATH}" --watch-dirs "${APP_DIR}"
|
|
|
73 |
|
74 |
# Keep the job alive
|
75 |
echo "Gradio app finished at: \$(date)"
|
@@ -85,8 +90,6 @@ if [ $? -ne 0 ]; then
|
|
85 |
fi
|
86 |
|
87 |
echo "Submitting job to cluster..."
|
88 |
-
# JOB_ID=$(ssh -t "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'cd $APP_DIR && sbatch --parsable $script_location'")
|
89 |
-
# ssh "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'tail \"${OUTPUT_DIR}/${JOB_ID}.out\"'"
|
90 |
|
91 |
JOB_ID=$(ssh -t "$CLUSTER_USER@$CLUSTER_HOST" \
|
92 |
"bash -l -c 'cd \"$APP_DIR\" && sbatch --parsable \"$script_location\"'" \
|
@@ -139,7 +142,6 @@ sleep 10
|
|
139 |
|
140 |
# Check if Gradio is actually running
|
141 |
echo "Checking if Gradio app started successfully..."
|
142 |
-
# GRADIO_CHECK=$(ssh "$CLUSTER_USER@$CLUSTER_HOST" "ssh $NODE 'ps aux | grep gradio | grep -v grep' 2>/dev/null")
|
143 |
GRADIO_CHECK=$(ssh "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'ssh $NODE \"ps aux | grep gradio | grep -v grep\"' 2>/dev/null")
|
144 |
|
145 |
# Get NODE locally
|
@@ -163,10 +165,9 @@ fi
|
|
163 |
cancel_job() {
|
164 |
read -p "Would you like to cancel the job? (y/n): " -n 1 -r
|
165 |
if [[ $REPLY =~ ^[Yy]$ ]]; then
|
166 |
-
## job id known only remotely
|
167 |
-
# ssh "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'scancel \${JOB_ID}'"
|
168 |
ssh "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'scancel ${JOB_ID} '"
|
169 |
-
|
|
|
170 |
fi
|
171 |
}
|
172 |
|
@@ -174,8 +175,6 @@ cancel_job() {
|
|
174 |
read -p "Would you like to set up port forwarding now? (y/n): " -n 1 -r
|
175 |
echo ""
|
176 |
if [[ $REPLY =~ ^[Yy]$ ]]; then
|
177 |
-
# ssh -L "${GRADIO_PORT}:${NODE}:${GRADIO_PORT}" "$CLUSTER_USER@$CLUSTER_HOST" \
|
178 |
-
# -t "echo 'Port forwarding active: localhost:${GRADIO_PORT} -> ${NODE}:${GRADIO_PORT}'; bash
|
179 |
# If GRADIO_PORT is in use locally, pick a random free port
|
180 |
if lsof -iTCP:"$GRADIO_PORT" -sTCP:LISTEN >/dev/null 2>&1; then
|
181 |
echo "Port $GRADIO_PORT is already in use locally — selecting a free one..."
|
@@ -189,7 +188,7 @@ if [[ $REPLY =~ ^[Yy]$ ]]; then
|
|
189 |
|
190 |
echo "Using local port: $LOCAL_PORT"
|
191 |
|
192 |
-
echo "Setting up port forwarding... Open
|
193 |
ssh -L "${LOCAL_PORT}:${NODE}:${GRADIO_PORT}" "$CLUSTER_USER@$CLUSTER_HOST" \
|
194 |
-t "echo 'Port forwarding active: localhost:${LOCAL_PORT} -> ${NODE}:${GRADIO_PORT}'; bash"
|
195 |
|
@@ -199,7 +198,6 @@ if [[ $REPLY =~ ^[Yy]$ ]]; then
|
|
199 |
cancel_job
|
200 |
else
|
201 |
echo "Skipping port forwarding."
|
202 |
-
|
203 |
# Connection info
|
204 |
cat <<EOF
|
205 |
|
@@ -227,7 +225,4 @@ EOF
|
|
227 |
echo "Later you can run: ssh -L $GRADIO_PORT:$NODE:$GRADIO_PORT $CLUSTER_USER@$CLUSTER_HOST"
|
228 |
fi
|
229 |
|
230 |
-
echo ""
|
231 |
-
echo "Job $JOB_ID is still running on $CLUSTER_HOST:$NODE"
|
232 |
-
# echo "Don't forget to cancel it when done: ssh $CLUSTER_USER@$CLUSTER_HOST 'scancel $JOB_ID'"
|
233 |
|
|
|
15 |
NODES=1
|
16 |
NTASKS_PER_NODE=1
|
17 |
CPUS_PER_TASK=4
|
18 |
+
### request more memory to run on more models
|
19 |
+
MEM="16G"
|
20 |
TIME="02:00:00"
|
21 |
GRADIO_PORT=7861
|
22 |
script_location="$APP_DIR/$SCRIPT_NAME"
|
|
|
63 |
|
64 |
# Activate virtual environment
|
65 |
source "${ENV_PATH}"
|
66 |
+
echo $HF_TOKEN
|
67 |
+
hf auth login --token $HF_TOKEN
|
68 |
+
hf auth whoami
|
69 |
|
70 |
# Set up environment
|
71 |
export GRADIO_SERVER_NAME="0.0.0.0"
|
|
|
74 |
# Start Gradio app
|
75 |
echo "Starting Gradio app on port ${GRADIO_PORT}..."
|
76 |
gradio "${APP_PATH}" --watch-dirs "${APP_DIR}"
|
77 |
+
# python "${APP_PATH}" --watch-dirs "${APP_DIR}"
|
78 |
|
79 |
# Keep the job alive
|
80 |
echo "Gradio app finished at: \$(date)"
|
|
|
90 |
fi
|
91 |
|
92 |
echo "Submitting job to cluster..."
|
|
|
|
|
93 |
|
94 |
JOB_ID=$(ssh -t "$CLUSTER_USER@$CLUSTER_HOST" \
|
95 |
"bash -l -c 'cd \"$APP_DIR\" && sbatch --parsable \"$script_location\"'" \
|
|
|
142 |
|
143 |
# Check if Gradio is actually running
|
144 |
echo "Checking if Gradio app started successfully..."
|
|
|
145 |
GRADIO_CHECK=$(ssh "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'ssh $NODE \"ps aux | grep gradio | grep -v grep\"' 2>/dev/null")
|
146 |
|
147 |
# Get NODE locally
|
|
|
165 |
cancel_job() {
|
166 |
read -p "Would you like to cancel the job? (y/n): " -n 1 -r
|
167 |
if [[ $REPLY =~ ^[Yy]$ ]]; then
|
|
|
|
|
168 |
ssh "$CLUSTER_USER@$CLUSTER_HOST" "bash -l -c 'scancel ${JOB_ID} '"
|
169 |
+
else
|
170 |
+
echo "Job $JOB_ID is still running on $CLUSTER_HOST:$NODE"
|
171 |
fi
|
172 |
}
|
173 |
|
|
|
175 |
read -p "Would you like to set up port forwarding now? (y/n): " -n 1 -r
|
176 |
echo ""
|
177 |
if [[ $REPLY =~ ^[Yy]$ ]]; then
|
|
|
|
|
178 |
# If GRADIO_PORT is in use locally, pick a random free port
|
179 |
if lsof -iTCP:"$GRADIO_PORT" -sTCP:LISTEN >/dev/null 2>&1; then
|
180 |
echo "Port $GRADIO_PORT is already in use locally — selecting a free one..."
|
|
|
188 |
|
189 |
echo "Using local port: $LOCAL_PORT"
|
190 |
|
191 |
+
echo "Setting up port forwarding... Open http://localhost:${LOCAL_PORT} in your browser to access the app."
|
192 |
ssh -L "${LOCAL_PORT}:${NODE}:${GRADIO_PORT}" "$CLUSTER_USER@$CLUSTER_HOST" \
|
193 |
-t "echo 'Port forwarding active: localhost:${LOCAL_PORT} -> ${NODE}:${GRADIO_PORT}'; bash"
|
194 |
|
|
|
198 |
cancel_job
|
199 |
else
|
200 |
echo "Skipping port forwarding."
|
|
|
201 |
# Connection info
|
202 |
cat <<EOF
|
203 |
|
|
|
225 |
echo "Later you can run: ssh -L $GRADIO_PORT:$NODE:$GRADIO_PORT $CLUSTER_USER@$CLUSTER_HOST"
|
226 |
fi
|
227 |
|
|
|
|
|
|
|
228 |
|