File size: 885 Bytes
e38d825
828b751
e38d825
 
828b751
4257568
828b751
 
 
4257568
 
828b751
 
 
4a0738f
828b751
4a0738f
 
 
 
4257568
f83d80f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr
from transformers import BartForSequenceClassification, BartTokenizer


# model = pipeline("text-generation")

# following https://joeddav.github.io/blog/2020/05/29/ZSL.html
tokenizer_bart = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
model_bart_sq = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')


def zs(premise,hypothesis):
    input_ids = tokenizer_bart.encode(premise, hypothesis, return_tensors='pt')
    logits = model_bart_sq(input_ids)[0]
    entail_contradiction_logits = logits[:,[0,1,2]]
    probs = entail_contradiction_logits.softmax(dim=1)
    contra_prob = round(probs[:,0].item() * 100,2)
    neut_prob = round(probs[:,1].item() * 100,2)
    entail_prob = round(probs[:,2].item() * 100,2)
    return contra_prob, neut_prob, entail_prob

gr.Interface(fn=zs, inputs=["text", "text"], outputs="text").launch()