LayerDiffuse-gradio-unofficial
/
ComfyUI
/comfy_extras
/chainner_models
/architecture
/OmniSR
/layernorm.py
| #!/usr/bin/env python3 | |
| # -*- coding:utf-8 -*- | |
| ############################################################# | |
| # File: layernorm.py | |
| # Created Date: Tuesday April 28th 2022 | |
| # Author: Chen Xuanhong | |
| # Email: [email protected] | |
| # Last Modified: Thursday, 20th April 2023 9:28:20 am | |
| # Modified By: Chen Xuanhong | |
| # Copyright (c) 2020 Shanghai Jiao Tong University | |
| ############################################################# | |
| import torch | |
| import torch.nn as nn | |
| class LayerNormFunction(torch.autograd.Function): | |
| def forward(ctx, x, weight, bias, eps): | |
| ctx.eps = eps | |
| N, C, H, W = x.size() | |
| mu = x.mean(1, keepdim=True) | |
| var = (x - mu).pow(2).mean(1, keepdim=True) | |
| y = (x - mu) / (var + eps).sqrt() | |
| ctx.save_for_backward(y, var, weight) | |
| y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) | |
| return y | |
| def backward(ctx, grad_output): | |
| eps = ctx.eps | |
| N, C, H, W = grad_output.size() | |
| y, var, weight = ctx.saved_variables | |
| g = grad_output * weight.view(1, C, 1, 1) | |
| mean_g = g.mean(dim=1, keepdim=True) | |
| mean_gy = (g * y).mean(dim=1, keepdim=True) | |
| gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) | |
| return ( | |
| gx, | |
| (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), | |
| grad_output.sum(dim=3).sum(dim=2).sum(dim=0), | |
| None, | |
| ) | |
| class LayerNorm2d(nn.Module): | |
| def __init__(self, channels, eps=1e-6): | |
| super(LayerNorm2d, self).__init__() | |
| self.register_parameter("weight", nn.Parameter(torch.ones(channels))) | |
| self.register_parameter("bias", nn.Parameter(torch.zeros(channels))) | |
| self.eps = eps | |
| def forward(self, x): | |
| return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) | |
| class GRN(nn.Module): | |
| """GRN (Global Response Normalization) layer""" | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.gamma = nn.Parameter(torch.zeros(1, dim, 1, 1)) | |
| self.beta = nn.Parameter(torch.zeros(1, dim, 1, 1)) | |
| def forward(self, x): | |
| Gx = torch.norm(x, p=2, dim=(2, 3), keepdim=True) | |
| Nx = Gx / (Gx.mean(dim=1, keepdim=True) + 1e-6) | |
| return self.gamma * (x * Nx) + self.beta + x | |