|  |  | 
					
						
						|  | import math | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.utils.checkpoint as checkpoint | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | from einops.layers.torch import Rearrange | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  |  | 
					
						
						|  | from .timm.drop import DropPath | 
					
						
						|  | from .timm.weight_init import trunc_normal_ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def img2windows(img, H_sp, W_sp): | 
					
						
						|  | """ | 
					
						
						|  | Input: Image (B, C, H, W) | 
					
						
						|  | Output: Window Partition (B', N, C) | 
					
						
						|  | """ | 
					
						
						|  | B, C, H, W = img.shape | 
					
						
						|  | img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) | 
					
						
						|  | img_perm = ( | 
					
						
						|  | img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C) | 
					
						
						|  | ) | 
					
						
						|  | return img_perm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def windows2img(img_splits_hw, H_sp, W_sp, H, W): | 
					
						
						|  | """ | 
					
						
						|  | Input: Window Partition (B', N, C) | 
					
						
						|  | Output: Image (B, H, W, C) | 
					
						
						|  | """ | 
					
						
						|  | B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp)) | 
					
						
						|  |  | 
					
						
						|  | img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1) | 
					
						
						|  | img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | 
					
						
						|  | return img | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SpatialGate(nn.Module): | 
					
						
						|  | """Spatial-Gate. | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Half of input channels. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.norm = nn.LayerNorm(dim) | 
					
						
						|  | self.conv = nn.Conv2d( | 
					
						
						|  | dim, dim, kernel_size=3, stride=1, padding=1, groups=dim | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, H, W): | 
					
						
						|  |  | 
					
						
						|  | x1, x2 = x.chunk(2, dim=-1) | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | x2 = ( | 
					
						
						|  | self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W)) | 
					
						
						|  | .flatten(2) | 
					
						
						|  | .transpose(-1, -2) | 
					
						
						|  | .contiguous() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return x1 * x2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SGFN(nn.Module): | 
					
						
						|  | """Spatial-Gate Feed-Forward Network. | 
					
						
						|  | Args: | 
					
						
						|  | in_features (int): Number of input channels. | 
					
						
						|  | hidden_features (int | None): Number of hidden channels. Default: None | 
					
						
						|  | out_features (int | None): Number of output channels. Default: None | 
					
						
						|  | act_layer (nn.Module): Activation layer. Default: nn.GELU | 
					
						
						|  | drop (float): Dropout rate. Default: 0.0 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_features, | 
					
						
						|  | hidden_features=None, | 
					
						
						|  | out_features=None, | 
					
						
						|  | act_layer=nn.GELU, | 
					
						
						|  | drop=0.0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | out_features = out_features or in_features | 
					
						
						|  | hidden_features = hidden_features or in_features | 
					
						
						|  | self.fc1 = nn.Linear(in_features, hidden_features) | 
					
						
						|  | self.act = act_layer() | 
					
						
						|  | self.sg = SpatialGate(hidden_features // 2) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_features // 2, out_features) | 
					
						
						|  | self.drop = nn.Dropout(drop) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, H, W): | 
					
						
						|  | """ | 
					
						
						|  | Input: x: (B, H*W, C), H, W | 
					
						
						|  | Output: x: (B, H*W, C) | 
					
						
						|  | """ | 
					
						
						|  | x = self.fc1(x) | 
					
						
						|  | x = self.act(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  |  | 
					
						
						|  | x = self.sg(x, H, W) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  |  | 
					
						
						|  | x = self.fc2(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DynamicPosBias(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | """Dynamic Relative Position Bias. | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Number of input channels. | 
					
						
						|  | num_heads (int): Number of attention heads. | 
					
						
						|  | residual (bool):  If True, use residual strage to connect conv. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, num_heads, residual): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.residual = residual | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.pos_dim = dim // 4 | 
					
						
						|  | self.pos_proj = nn.Linear(2, self.pos_dim) | 
					
						
						|  | self.pos1 = nn.Sequential( | 
					
						
						|  | nn.LayerNorm(self.pos_dim), | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | nn.Linear(self.pos_dim, self.pos_dim), | 
					
						
						|  | ) | 
					
						
						|  | self.pos2 = nn.Sequential( | 
					
						
						|  | nn.LayerNorm(self.pos_dim), | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | nn.Linear(self.pos_dim, self.pos_dim), | 
					
						
						|  | ) | 
					
						
						|  | self.pos3 = nn.Sequential( | 
					
						
						|  | nn.LayerNorm(self.pos_dim), | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | nn.Linear(self.pos_dim, self.num_heads), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, biases): | 
					
						
						|  | if self.residual: | 
					
						
						|  | pos = self.pos_proj(biases) | 
					
						
						|  | pos = pos + self.pos1(pos) | 
					
						
						|  | pos = pos + self.pos2(pos) | 
					
						
						|  | pos = self.pos3(pos) | 
					
						
						|  | else: | 
					
						
						|  | pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) | 
					
						
						|  | return pos | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Spatial_Attention(nn.Module): | 
					
						
						|  | """Spatial Window Self-Attention. | 
					
						
						|  | It supports rectangle window (containing square window). | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Number of input channels. | 
					
						
						|  | idx (int): The indentix of window. (0/1) | 
					
						
						|  | split_size (tuple(int)): Height and Width of spatial window. | 
					
						
						|  | dim_out (int | None): The dimension of the attention output. Default: None | 
					
						
						|  | num_heads (int): Number of attention heads. Default: 6 | 
					
						
						|  | attn_drop (float): Dropout ratio of attention weight. Default: 0.0 | 
					
						
						|  | proj_drop (float): Dropout ratio of output. Default: 0.0 | 
					
						
						|  | qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set | 
					
						
						|  | position_bias (bool): The dynamic relative position bias. Default: True | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | idx, | 
					
						
						|  | split_size=[8, 8], | 
					
						
						|  | dim_out=None, | 
					
						
						|  | num_heads=6, | 
					
						
						|  | attn_drop=0.0, | 
					
						
						|  | proj_drop=0.0, | 
					
						
						|  | qk_scale=None, | 
					
						
						|  | position_bias=True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.dim_out = dim_out or dim | 
					
						
						|  | self.split_size = split_size | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.idx = idx | 
					
						
						|  | self.position_bias = position_bias | 
					
						
						|  |  | 
					
						
						|  | head_dim = dim // num_heads | 
					
						
						|  | self.scale = qk_scale or head_dim**-0.5 | 
					
						
						|  |  | 
					
						
						|  | if idx == 0: | 
					
						
						|  | H_sp, W_sp = self.split_size[0], self.split_size[1] | 
					
						
						|  | elif idx == 1: | 
					
						
						|  | W_sp, H_sp = self.split_size[0], self.split_size[1] | 
					
						
						|  | else: | 
					
						
						|  | print("ERROR MODE", idx) | 
					
						
						|  | exit(0) | 
					
						
						|  | self.H_sp = H_sp | 
					
						
						|  | self.W_sp = W_sp | 
					
						
						|  |  | 
					
						
						|  | if self.position_bias: | 
					
						
						|  | self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) | 
					
						
						|  |  | 
					
						
						|  | position_bias_h = torch.arange(1 - self.H_sp, self.H_sp) | 
					
						
						|  | position_bias_w = torch.arange(1 - self.W_sp, self.W_sp) | 
					
						
						|  | biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) | 
					
						
						|  | biases = biases.flatten(1).transpose(0, 1).contiguous().float() | 
					
						
						|  | self.register_buffer("rpe_biases", biases) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | coords_h = torch.arange(self.H_sp) | 
					
						
						|  | coords_w = torch.arange(self.W_sp) | 
					
						
						|  | coords = torch.stack(torch.meshgrid([coords_h, coords_w])) | 
					
						
						|  | coords_flatten = torch.flatten(coords, 1) | 
					
						
						|  | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | 
					
						
						|  | relative_coords = relative_coords.permute(1, 2, 0).contiguous() | 
					
						
						|  | relative_coords[:, :, 0] += self.H_sp - 1 | 
					
						
						|  | relative_coords[:, :, 1] += self.W_sp - 1 | 
					
						
						|  | relative_coords[:, :, 0] *= 2 * self.W_sp - 1 | 
					
						
						|  | relative_position_index = relative_coords.sum(-1) | 
					
						
						|  | self.register_buffer("relative_position_index", relative_position_index) | 
					
						
						|  |  | 
					
						
						|  | self.attn_drop = nn.Dropout(attn_drop) | 
					
						
						|  |  | 
					
						
						|  | def im2win(self, x, H, W): | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | x = x.transpose(-2, -1).contiguous().view(B, C, H, W) | 
					
						
						|  | x = img2windows(x, self.H_sp, self.W_sp) | 
					
						
						|  | x = ( | 
					
						
						|  | x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads) | 
					
						
						|  | .permute(0, 2, 1, 3) | 
					
						
						|  | .contiguous() | 
					
						
						|  | ) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward(self, qkv, H, W, mask=None): | 
					
						
						|  | """ | 
					
						
						|  | Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size | 
					
						
						|  | Output: x (B, H, W, C) | 
					
						
						|  | """ | 
					
						
						|  | q, k, v = qkv[0], qkv[1], qkv[2] | 
					
						
						|  |  | 
					
						
						|  | B, L, C = q.shape | 
					
						
						|  | assert L == H * W, "flatten img_tokens has wrong size" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = self.im2win(q, H, W) | 
					
						
						|  | k = self.im2win(k, H, W) | 
					
						
						|  | v = self.im2win(v, H, W) | 
					
						
						|  |  | 
					
						
						|  | q = q * self.scale | 
					
						
						|  | attn = q @ k.transpose(-2, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.position_bias: | 
					
						
						|  | pos = self.pos(self.rpe_biases) | 
					
						
						|  |  | 
					
						
						|  | relative_position_bias = pos[self.relative_position_index.view(-1)].view( | 
					
						
						|  | self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1 | 
					
						
						|  | ) | 
					
						
						|  | relative_position_bias = relative_position_bias.permute( | 
					
						
						|  | 2, 0, 1 | 
					
						
						|  | ).contiguous() | 
					
						
						|  | attn = attn + relative_position_bias.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | N = attn.shape[3] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mask is not None: | 
					
						
						|  | nW = mask.shape[0] | 
					
						
						|  | attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze( | 
					
						
						|  | 0 | 
					
						
						|  | ) | 
					
						
						|  | attn = attn.view(-1, self.num_heads, N, N) | 
					
						
						|  |  | 
					
						
						|  | attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype) | 
					
						
						|  | attn = self.attn_drop(attn) | 
					
						
						|  |  | 
					
						
						|  | x = attn @ v | 
					
						
						|  | x = x.transpose(1, 2).reshape( | 
					
						
						|  | -1, self.H_sp * self.W_sp, C | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = windows2img(x, self.H_sp, self.W_sp, H, W) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Adaptive_Spatial_Attention(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | """Adaptive Spatial Self-Attention | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Number of input channels. | 
					
						
						|  | num_heads (int): Number of attention heads. Default: 6 | 
					
						
						|  | split_size (tuple(int)): Height and Width of spatial window. | 
					
						
						|  | shift_size (tuple(int)): Shift size for spatial window. | 
					
						
						|  | qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | 
					
						
						|  | qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. | 
					
						
						|  | drop (float): Dropout rate. Default: 0.0 | 
					
						
						|  | attn_drop (float): Attention dropout rate. Default: 0.0 | 
					
						
						|  | rg_idx (int): The indentix of Residual Group (RG) | 
					
						
						|  | b_idx (int): The indentix of Block in each RG | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | num_heads, | 
					
						
						|  | reso=64, | 
					
						
						|  | split_size=[8, 8], | 
					
						
						|  | shift_size=[1, 2], | 
					
						
						|  | qkv_bias=False, | 
					
						
						|  | qk_scale=None, | 
					
						
						|  | drop=0.0, | 
					
						
						|  | attn_drop=0.0, | 
					
						
						|  | rg_idx=0, | 
					
						
						|  | b_idx=0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.split_size = split_size | 
					
						
						|  | self.shift_size = shift_size | 
					
						
						|  | self.b_idx = b_idx | 
					
						
						|  | self.rg_idx = rg_idx | 
					
						
						|  | self.patches_resolution = reso | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | 0 <= self.shift_size[0] < self.split_size[0] | 
					
						
						|  | ), "shift_size must in 0-split_size0" | 
					
						
						|  | assert ( | 
					
						
						|  | 0 <= self.shift_size[1] < self.split_size[1] | 
					
						
						|  | ), "shift_size must in 0-split_size1" | 
					
						
						|  |  | 
					
						
						|  | self.branch_num = 2 | 
					
						
						|  |  | 
					
						
						|  | self.proj = nn.Linear(dim, dim) | 
					
						
						|  | self.proj_drop = nn.Dropout(drop) | 
					
						
						|  |  | 
					
						
						|  | self.attns = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | Spatial_Attention( | 
					
						
						|  | dim // 2, | 
					
						
						|  | idx=i, | 
					
						
						|  | split_size=split_size, | 
					
						
						|  | num_heads=num_heads // 2, | 
					
						
						|  | dim_out=dim // 2, | 
					
						
						|  | qk_scale=qk_scale, | 
					
						
						|  | attn_drop=attn_drop, | 
					
						
						|  | proj_drop=drop, | 
					
						
						|  | position_bias=True, | 
					
						
						|  | ) | 
					
						
						|  | for i in range(self.branch_num) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( | 
					
						
						|  | self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 | 
					
						
						|  | ): | 
					
						
						|  | attn_mask = self.calculate_mask( | 
					
						
						|  | self.patches_resolution, self.patches_resolution | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("attn_mask_0", attn_mask[0]) | 
					
						
						|  | self.register_buffer("attn_mask_1", attn_mask[1]) | 
					
						
						|  | else: | 
					
						
						|  | attn_mask = None | 
					
						
						|  | self.register_buffer("attn_mask_0", None) | 
					
						
						|  | self.register_buffer("attn_mask_1", None) | 
					
						
						|  |  | 
					
						
						|  | self.dwconv = nn.Sequential( | 
					
						
						|  | nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), | 
					
						
						|  | nn.BatchNorm2d(dim), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | ) | 
					
						
						|  | self.channel_interaction = nn.Sequential( | 
					
						
						|  | nn.AdaptiveAvgPool2d(1), | 
					
						
						|  | nn.Conv2d(dim, dim // 8, kernel_size=1), | 
					
						
						|  | nn.BatchNorm2d(dim // 8), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Conv2d(dim // 8, dim, kernel_size=1), | 
					
						
						|  | ) | 
					
						
						|  | self.spatial_interaction = nn.Sequential( | 
					
						
						|  | nn.Conv2d(dim, dim // 16, kernel_size=1), | 
					
						
						|  | nn.BatchNorm2d(dim // 16), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Conv2d(dim // 16, 1, kernel_size=1), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def calculate_mask(self, H, W): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_mask_0 = torch.zeros((1, H, W, 1)) | 
					
						
						|  | img_mask_1 = torch.zeros((1, H, W, 1)) | 
					
						
						|  | h_slices_0 = ( | 
					
						
						|  | slice(0, -self.split_size[0]), | 
					
						
						|  | slice(-self.split_size[0], -self.shift_size[0]), | 
					
						
						|  | slice(-self.shift_size[0], None), | 
					
						
						|  | ) | 
					
						
						|  | w_slices_0 = ( | 
					
						
						|  | slice(0, -self.split_size[1]), | 
					
						
						|  | slice(-self.split_size[1], -self.shift_size[1]), | 
					
						
						|  | slice(-self.shift_size[1], None), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | h_slices_1 = ( | 
					
						
						|  | slice(0, -self.split_size[1]), | 
					
						
						|  | slice(-self.split_size[1], -self.shift_size[1]), | 
					
						
						|  | slice(-self.shift_size[1], None), | 
					
						
						|  | ) | 
					
						
						|  | w_slices_1 = ( | 
					
						
						|  | slice(0, -self.split_size[0]), | 
					
						
						|  | slice(-self.split_size[0], -self.shift_size[0]), | 
					
						
						|  | slice(-self.shift_size[0], None), | 
					
						
						|  | ) | 
					
						
						|  | cnt = 0 | 
					
						
						|  | for h in h_slices_0: | 
					
						
						|  | for w in w_slices_0: | 
					
						
						|  | img_mask_0[:, h, w, :] = cnt | 
					
						
						|  | cnt += 1 | 
					
						
						|  | cnt = 0 | 
					
						
						|  | for h in h_slices_1: | 
					
						
						|  | for w in w_slices_1: | 
					
						
						|  | img_mask_1[:, h, w, :] = cnt | 
					
						
						|  | cnt += 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_mask_0 = img_mask_0.view( | 
					
						
						|  | 1, | 
					
						
						|  | H // self.split_size[0], | 
					
						
						|  | self.split_size[0], | 
					
						
						|  | W // self.split_size[1], | 
					
						
						|  | self.split_size[1], | 
					
						
						|  | 1, | 
					
						
						|  | ) | 
					
						
						|  | img_mask_0 = ( | 
					
						
						|  | img_mask_0.permute(0, 1, 3, 2, 4, 5) | 
					
						
						|  | .contiguous() | 
					
						
						|  | .view(-1, self.split_size[0], self.split_size[1], 1) | 
					
						
						|  | ) | 
					
						
						|  | mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1]) | 
					
						
						|  | attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2) | 
					
						
						|  | attn_mask_0 = attn_mask_0.masked_fill( | 
					
						
						|  | attn_mask_0 != 0, float(-100.0) | 
					
						
						|  | ).masked_fill(attn_mask_0 == 0, float(0.0)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_mask_1 = img_mask_1.view( | 
					
						
						|  | 1, | 
					
						
						|  | H // self.split_size[1], | 
					
						
						|  | self.split_size[1], | 
					
						
						|  | W // self.split_size[0], | 
					
						
						|  | self.split_size[0], | 
					
						
						|  | 1, | 
					
						
						|  | ) | 
					
						
						|  | img_mask_1 = ( | 
					
						
						|  | img_mask_1.permute(0, 1, 3, 2, 4, 5) | 
					
						
						|  | .contiguous() | 
					
						
						|  | .view(-1, self.split_size[1], self.split_size[0], 1) | 
					
						
						|  | ) | 
					
						
						|  | mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0]) | 
					
						
						|  | attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2) | 
					
						
						|  | attn_mask_1 = attn_mask_1.masked_fill( | 
					
						
						|  | attn_mask_1 != 0, float(-100.0) | 
					
						
						|  | ).masked_fill(attn_mask_1 == 0, float(0.0)) | 
					
						
						|  |  | 
					
						
						|  | return attn_mask_0, attn_mask_1 | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, H, W): | 
					
						
						|  | """ | 
					
						
						|  | Input: x: (B, H*W, C), H, W | 
					
						
						|  | Output: x: (B, H*W, C) | 
					
						
						|  | """ | 
					
						
						|  | B, L, C = x.shape | 
					
						
						|  | assert L == H * W, "flatten img_tokens has wrong size" | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3) | 
					
						
						|  |  | 
					
						
						|  | v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_split_size = max(self.split_size[0], self.split_size[1]) | 
					
						
						|  | pad_l = pad_t = 0 | 
					
						
						|  | pad_r = (max_split_size - W % max_split_size) % max_split_size | 
					
						
						|  | pad_b = (max_split_size - H % max_split_size) % max_split_size | 
					
						
						|  |  | 
					
						
						|  | qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2) | 
					
						
						|  | qkv = ( | 
					
						
						|  | F.pad(qkv, (pad_l, pad_r, pad_t, pad_b)) | 
					
						
						|  | .reshape(3, B, C, -1) | 
					
						
						|  | .transpose(-2, -1) | 
					
						
						|  | ) | 
					
						
						|  | _H = pad_b + H | 
					
						
						|  | _W = pad_r + W | 
					
						
						|  | _L = _H * _W | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or ( | 
					
						
						|  | self.rg_idx % 2 != 0 and self.b_idx % 4 == 0 | 
					
						
						|  | ): | 
					
						
						|  | qkv = qkv.view(3, B, _H, _W, C) | 
					
						
						|  | qkv_0 = torch.roll( | 
					
						
						|  | qkv[:, :, :, :, : C // 2], | 
					
						
						|  | shifts=(-self.shift_size[0], -self.shift_size[1]), | 
					
						
						|  | dims=(2, 3), | 
					
						
						|  | ) | 
					
						
						|  | qkv_0 = qkv_0.view(3, B, _L, C // 2) | 
					
						
						|  | qkv_1 = torch.roll( | 
					
						
						|  | qkv[:, :, :, :, C // 2 :], | 
					
						
						|  | shifts=(-self.shift_size[1], -self.shift_size[0]), | 
					
						
						|  | dims=(2, 3), | 
					
						
						|  | ) | 
					
						
						|  | qkv_1 = qkv_1.view(3, B, _L, C // 2) | 
					
						
						|  |  | 
					
						
						|  | if self.patches_resolution != _H or self.patches_resolution != _W: | 
					
						
						|  | mask_tmp = self.calculate_mask(_H, _W) | 
					
						
						|  | x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device)) | 
					
						
						|  | x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device)) | 
					
						
						|  | else: | 
					
						
						|  | x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0) | 
					
						
						|  | x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1) | 
					
						
						|  |  | 
					
						
						|  | x1 = torch.roll( | 
					
						
						|  | x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | x2 = torch.roll( | 
					
						
						|  | x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | x1 = x1[:, :H, :W, :].reshape(B, L, C // 2) | 
					
						
						|  | x2 = x2[:, :H, :W, :].reshape(B, L, C // 2) | 
					
						
						|  |  | 
					
						
						|  | attened_x = torch.cat([x1, x2], dim=2) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape( | 
					
						
						|  | B, L, C // 2 | 
					
						
						|  | ) | 
					
						
						|  | x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape( | 
					
						
						|  | B, L, C // 2 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attened_x = torch.cat([x1, x2], dim=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | conv_x = self.dwconv(v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | channel_map = ( | 
					
						
						|  | self.channel_interaction(conv_x) | 
					
						
						|  | .permute(0, 2, 3, 1) | 
					
						
						|  | .contiguous() | 
					
						
						|  | .view(B, 1, C) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) | 
					
						
						|  | spatial_map = self.spatial_interaction(attention_reshape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attened_x = attened_x * torch.sigmoid(channel_map) | 
					
						
						|  |  | 
					
						
						|  | conv_x = torch.sigmoid(spatial_map) * conv_x | 
					
						
						|  | conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C) | 
					
						
						|  |  | 
					
						
						|  | x = attened_x + conv_x | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Adaptive_Channel_Attention(nn.Module): | 
					
						
						|  |  | 
					
						
						|  | """Adaptive Channel Self-Attention | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Number of input channels. | 
					
						
						|  | num_heads (int): Number of attention heads. Default: 6 | 
					
						
						|  | qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | 
					
						
						|  | qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. | 
					
						
						|  | attn_drop (float): Attention dropout rate. Default: 0.0 | 
					
						
						|  | drop_path (float): Stochastic depth rate. Default: 0.0 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | num_heads=8, | 
					
						
						|  | qkv_bias=False, | 
					
						
						|  | qk_scale=None, | 
					
						
						|  | attn_drop=0.0, | 
					
						
						|  | proj_drop=0.0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) | 
					
						
						|  |  | 
					
						
						|  | self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | 
					
						
						|  | self.attn_drop = nn.Dropout(attn_drop) | 
					
						
						|  | self.proj = nn.Linear(dim, dim) | 
					
						
						|  | self.proj_drop = nn.Dropout(proj_drop) | 
					
						
						|  |  | 
					
						
						|  | self.dwconv = nn.Sequential( | 
					
						
						|  | nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim), | 
					
						
						|  | nn.BatchNorm2d(dim), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | ) | 
					
						
						|  | self.channel_interaction = nn.Sequential( | 
					
						
						|  | nn.AdaptiveAvgPool2d(1), | 
					
						
						|  | nn.Conv2d(dim, dim // 8, kernel_size=1), | 
					
						
						|  | nn.BatchNorm2d(dim // 8), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Conv2d(dim // 8, dim, kernel_size=1), | 
					
						
						|  | ) | 
					
						
						|  | self.spatial_interaction = nn.Sequential( | 
					
						
						|  | nn.Conv2d(dim, dim // 16, kernel_size=1), | 
					
						
						|  | nn.BatchNorm2d(dim // 16), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Conv2d(dim // 16, 1, kernel_size=1), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, H, W): | 
					
						
						|  | """ | 
					
						
						|  | Input: x: (B, H*W, C), H, W | 
					
						
						|  | Output: x: (B, H*W, C) | 
					
						
						|  | """ | 
					
						
						|  | B, N, C = x.shape | 
					
						
						|  | qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | 
					
						
						|  | qkv = qkv.permute(2, 0, 3, 1, 4) | 
					
						
						|  | q, k, v = qkv[0], qkv[1], qkv[2] | 
					
						
						|  |  | 
					
						
						|  | q = q.transpose(-2, -1) | 
					
						
						|  | k = k.transpose(-2, -1) | 
					
						
						|  | v = v.transpose(-2, -1) | 
					
						
						|  |  | 
					
						
						|  | v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W) | 
					
						
						|  |  | 
					
						
						|  | q = torch.nn.functional.normalize(q, dim=-1) | 
					
						
						|  | k = torch.nn.functional.normalize(k, dim=-1) | 
					
						
						|  |  | 
					
						
						|  | attn = (q @ k.transpose(-2, -1)) * self.temperature | 
					
						
						|  | attn = attn.softmax(dim=-1) | 
					
						
						|  | attn = self.attn_drop(attn) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | conv_x = self.dwconv(v_) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W) | 
					
						
						|  | channel_map = self.channel_interaction(attention_reshape) | 
					
						
						|  |  | 
					
						
						|  | spatial_map = ( | 
					
						
						|  | self.spatial_interaction(conv_x) | 
					
						
						|  | .permute(0, 2, 3, 1) | 
					
						
						|  | .contiguous() | 
					
						
						|  | .view(B, N, 1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attened_x = attened_x * torch.sigmoid(spatial_map) | 
					
						
						|  |  | 
					
						
						|  | conv_x = conv_x * torch.sigmoid(channel_map) | 
					
						
						|  | conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C) | 
					
						
						|  |  | 
					
						
						|  | x = attened_x + conv_x | 
					
						
						|  |  | 
					
						
						|  | x = self.proj(x) | 
					
						
						|  | x = self.proj_drop(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DATB(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | num_heads, | 
					
						
						|  | reso=64, | 
					
						
						|  | split_size=[2, 4], | 
					
						
						|  | shift_size=[1, 2], | 
					
						
						|  | expansion_factor=4.0, | 
					
						
						|  | qkv_bias=False, | 
					
						
						|  | qk_scale=None, | 
					
						
						|  | drop=0.0, | 
					
						
						|  | attn_drop=0.0, | 
					
						
						|  | drop_path=0.0, | 
					
						
						|  | act_layer=nn.GELU, | 
					
						
						|  | norm_layer=nn.LayerNorm, | 
					
						
						|  | rg_idx=0, | 
					
						
						|  | b_idx=0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = norm_layer(dim) | 
					
						
						|  |  | 
					
						
						|  | if b_idx % 2 == 0: | 
					
						
						|  |  | 
					
						
						|  | self.attn = Adaptive_Spatial_Attention( | 
					
						
						|  | dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | reso=reso, | 
					
						
						|  | split_size=split_size, | 
					
						
						|  | shift_size=shift_size, | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | qk_scale=qk_scale, | 
					
						
						|  | drop=drop, | 
					
						
						|  | attn_drop=attn_drop, | 
					
						
						|  | rg_idx=rg_idx, | 
					
						
						|  | b_idx=b_idx, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | self.attn = Adaptive_Channel_Attention( | 
					
						
						|  | dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | qk_scale=qk_scale, | 
					
						
						|  | attn_drop=attn_drop, | 
					
						
						|  | proj_drop=drop, | 
					
						
						|  | ) | 
					
						
						|  | self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | ffn_hidden_dim = int(dim * expansion_factor) | 
					
						
						|  | self.ffn = SGFN( | 
					
						
						|  | in_features=dim, | 
					
						
						|  | hidden_features=ffn_hidden_dim, | 
					
						
						|  | out_features=dim, | 
					
						
						|  | act_layer=act_layer, | 
					
						
						|  | ) | 
					
						
						|  | self.norm2 = norm_layer(dim) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_size): | 
					
						
						|  | """ | 
					
						
						|  | Input: x: (B, H*W, C), x_size: (H, W) | 
					
						
						|  | Output: x: (B, H*W, C) | 
					
						
						|  | """ | 
					
						
						|  | H, W = x_size | 
					
						
						|  | x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | 
					
						
						|  | x = x + self.drop_path(self.ffn(self.norm2(x), H, W)) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResidualGroup(nn.Module): | 
					
						
						|  | """ResidualGroup | 
					
						
						|  | Args: | 
					
						
						|  | dim (int): Number of input channels. | 
					
						
						|  | reso (int): Input resolution. | 
					
						
						|  | num_heads (int): Number of attention heads. | 
					
						
						|  | split_size (tuple(int)): Height and Width of spatial window. | 
					
						
						|  | expansion_factor (float): Ratio of ffn hidden dim to embedding dim. | 
					
						
						|  | qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | 
					
						
						|  | qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None | 
					
						
						|  | drop (float): Dropout rate. Default: 0 | 
					
						
						|  | attn_drop(float): Attention dropout rate. Default: 0 | 
					
						
						|  | drop_paths (float | None): Stochastic depth rate. | 
					
						
						|  | act_layer (nn.Module): Activation layer. Default: nn.GELU | 
					
						
						|  | norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm | 
					
						
						|  | depth (int): Number of dual aggregation Transformer blocks in residual group. | 
					
						
						|  | use_chk (bool): Whether to use checkpointing to save memory. | 
					
						
						|  | resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | reso, | 
					
						
						|  | num_heads, | 
					
						
						|  | split_size=[2, 4], | 
					
						
						|  | expansion_factor=4.0, | 
					
						
						|  | qkv_bias=False, | 
					
						
						|  | qk_scale=None, | 
					
						
						|  | drop=0.0, | 
					
						
						|  | attn_drop=0.0, | 
					
						
						|  | drop_paths=None, | 
					
						
						|  | act_layer=nn.GELU, | 
					
						
						|  | norm_layer=nn.LayerNorm, | 
					
						
						|  | depth=2, | 
					
						
						|  | use_chk=False, | 
					
						
						|  | resi_connection="1conv", | 
					
						
						|  | rg_idx=0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.use_chk = use_chk | 
					
						
						|  | self.reso = reso | 
					
						
						|  |  | 
					
						
						|  | self.blocks = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | DATB( | 
					
						
						|  | dim=dim, | 
					
						
						|  | num_heads=num_heads, | 
					
						
						|  | reso=reso, | 
					
						
						|  | split_size=split_size, | 
					
						
						|  | shift_size=[split_size[0] // 2, split_size[1] // 2], | 
					
						
						|  | expansion_factor=expansion_factor, | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | qk_scale=qk_scale, | 
					
						
						|  | drop=drop, | 
					
						
						|  | attn_drop=attn_drop, | 
					
						
						|  | drop_path=drop_paths[i], | 
					
						
						|  | act_layer=act_layer, | 
					
						
						|  | norm_layer=norm_layer, | 
					
						
						|  | rg_idx=rg_idx, | 
					
						
						|  | b_idx=i, | 
					
						
						|  | ) | 
					
						
						|  | for i in range(depth) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if resi_connection == "1conv": | 
					
						
						|  | self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | 
					
						
						|  | elif resi_connection == "3conv": | 
					
						
						|  | self.conv = nn.Sequential( | 
					
						
						|  | nn.Conv2d(dim, dim // 4, 3, 1, 1), | 
					
						
						|  | nn.LeakyReLU(negative_slope=0.2, inplace=True), | 
					
						
						|  | nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), | 
					
						
						|  | nn.LeakyReLU(negative_slope=0.2, inplace=True), | 
					
						
						|  | nn.Conv2d(dim // 4, dim, 3, 1, 1), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_size): | 
					
						
						|  | """ | 
					
						
						|  | Input: x: (B, H*W, C), x_size: (H, W) | 
					
						
						|  | Output: x: (B, H*W, C) | 
					
						
						|  | """ | 
					
						
						|  | H, W = x_size | 
					
						
						|  | res = x | 
					
						
						|  | for blk in self.blocks: | 
					
						
						|  | if self.use_chk: | 
					
						
						|  | x = checkpoint.checkpoint(blk, x, x_size) | 
					
						
						|  | else: | 
					
						
						|  | x = blk(x, x_size) | 
					
						
						|  | x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) | 
					
						
						|  | x = self.conv(x) | 
					
						
						|  | x = rearrange(x, "b c h w -> b (h w) c") | 
					
						
						|  | x = res + x | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Upsample(nn.Sequential): | 
					
						
						|  | """Upsample module. | 
					
						
						|  | Args: | 
					
						
						|  | scale (int): Scale factor. Supported scales: 2^n and 3. | 
					
						
						|  | num_feat (int): Channel number of intermediate features. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, scale, num_feat): | 
					
						
						|  | m = [] | 
					
						
						|  | if (scale & (scale - 1)) == 0: | 
					
						
						|  | for _ in range(int(math.log(scale, 2))): | 
					
						
						|  | m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | 
					
						
						|  | m.append(nn.PixelShuffle(2)) | 
					
						
						|  | elif scale == 3: | 
					
						
						|  | m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | 
					
						
						|  | m.append(nn.PixelShuffle(3)) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"scale {scale} is not supported. " "Supported scales: 2^n and 3." | 
					
						
						|  | ) | 
					
						
						|  | super(Upsample, self).__init__(*m) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UpsampleOneStep(nn.Sequential): | 
					
						
						|  | """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) | 
					
						
						|  | Used in lightweight SR to save parameters. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | scale (int): Scale factor. Supported scales: 2^n and 3. | 
					
						
						|  | num_feat (int): Channel number of intermediate features. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): | 
					
						
						|  | self.num_feat = num_feat | 
					
						
						|  | self.input_resolution = input_resolution | 
					
						
						|  | m = [] | 
					
						
						|  | m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) | 
					
						
						|  | m.append(nn.PixelShuffle(scale)) | 
					
						
						|  | super(UpsampleOneStep, self).__init__(*m) | 
					
						
						|  |  | 
					
						
						|  | def flops(self): | 
					
						
						|  | h, w = self.input_resolution | 
					
						
						|  | flops = h * w * self.num_feat * 3 * 9 | 
					
						
						|  | return flops | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DAT(nn.Module): | 
					
						
						|  | """Dual Aggregation Transformer | 
					
						
						|  | Args: | 
					
						
						|  | img_size (int): Input image size. Default: 64 | 
					
						
						|  | in_chans (int): Number of input image channels. Default: 3 | 
					
						
						|  | embed_dim (int): Patch embedding dimension. Default: 180 | 
					
						
						|  | depths (tuple(int)): Depth of each residual group (number of DATB in each RG). | 
					
						
						|  | split_size (tuple(int)): Height and Width of spatial window. | 
					
						
						|  | num_heads (tuple(int)): Number of attention heads in different residual groups. | 
					
						
						|  | expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4 | 
					
						
						|  | qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | 
					
						
						|  | qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None | 
					
						
						|  | drop_rate (float): Dropout rate. Default: 0 | 
					
						
						|  | attn_drop_rate (float): Attention dropout rate. Default: 0 | 
					
						
						|  | drop_path_rate (float): Stochastic depth rate. Default: 0.1 | 
					
						
						|  | act_layer (nn.Module): Activation layer. Default: nn.GELU | 
					
						
						|  | norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm | 
					
						
						|  | use_chk (bool): Whether to use checkpointing to save memory. | 
					
						
						|  | upscale: Upscale factor. 2/3/4 for image SR | 
					
						
						|  | img_range: Image range. 1. or 255. | 
					
						
						|  | resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, state_dict): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_size = 64 | 
					
						
						|  | in_chans = 3 | 
					
						
						|  | embed_dim = 180 | 
					
						
						|  | split_size = [2, 4] | 
					
						
						|  | depth = [2, 2, 2, 2] | 
					
						
						|  | num_heads = [2, 2, 2, 2] | 
					
						
						|  | expansion_factor = 4.0 | 
					
						
						|  | qkv_bias = True | 
					
						
						|  | qk_scale = None | 
					
						
						|  | drop_rate = 0.0 | 
					
						
						|  | attn_drop_rate = 0.0 | 
					
						
						|  | drop_path_rate = 0.1 | 
					
						
						|  | act_layer = nn.GELU | 
					
						
						|  | norm_layer = nn.LayerNorm | 
					
						
						|  | use_chk = False | 
					
						
						|  | upscale = 2 | 
					
						
						|  | img_range = 1.0 | 
					
						
						|  | resi_connection = "1conv" | 
					
						
						|  | upsampler = "pixelshuffle" | 
					
						
						|  |  | 
					
						
						|  | self.model_arch = "DAT" | 
					
						
						|  | self.sub_type = "SR" | 
					
						
						|  | self.state = state_dict | 
					
						
						|  |  | 
					
						
						|  | state_keys = state_dict.keys() | 
					
						
						|  | if "conv_before_upsample.0.weight" in state_keys: | 
					
						
						|  | if "conv_up1.weight" in state_keys: | 
					
						
						|  | upsampler = "nearest+conv" | 
					
						
						|  | else: | 
					
						
						|  | upsampler = "pixelshuffle" | 
					
						
						|  | supports_fp16 = False | 
					
						
						|  | elif "upsample.0.weight" in state_keys: | 
					
						
						|  | upsampler = "pixelshuffledirect" | 
					
						
						|  | else: | 
					
						
						|  | upsampler = "" | 
					
						
						|  |  | 
					
						
						|  | num_feat = ( | 
					
						
						|  | state_dict.get("conv_before_upsample.0.weight", None).shape[1] | 
					
						
						|  | if state_dict.get("conv_before_upsample.weight", None) | 
					
						
						|  | else 64 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | num_in_ch = state_dict["conv_first.weight"].shape[1] | 
					
						
						|  | in_chans = num_in_ch | 
					
						
						|  | if "conv_last.weight" in state_keys: | 
					
						
						|  | num_out_ch = state_dict["conv_last.weight"].shape[0] | 
					
						
						|  | else: | 
					
						
						|  | num_out_ch = num_in_ch | 
					
						
						|  |  | 
					
						
						|  | upscale = 1 | 
					
						
						|  | if upsampler == "nearest+conv": | 
					
						
						|  | upsample_keys = [ | 
					
						
						|  | x for x in state_keys if "conv_up" in x and "bias" not in x | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for upsample_key in upsample_keys: | 
					
						
						|  | upscale *= 2 | 
					
						
						|  | elif upsampler == "pixelshuffle": | 
					
						
						|  | upsample_keys = [ | 
					
						
						|  | x | 
					
						
						|  | for x in state_keys | 
					
						
						|  | if "upsample" in x and "conv" not in x and "bias" not in x | 
					
						
						|  | ] | 
					
						
						|  | for upsample_key in upsample_keys: | 
					
						
						|  | shape = state_dict[upsample_key].shape[0] | 
					
						
						|  | upscale *= math.sqrt(shape // num_feat) | 
					
						
						|  | upscale = int(upscale) | 
					
						
						|  | elif upsampler == "pixelshuffledirect": | 
					
						
						|  | upscale = int( | 
					
						
						|  | math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | max_layer_num = 0 | 
					
						
						|  | max_block_num = 0 | 
					
						
						|  | for key in state_keys: | 
					
						
						|  | result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key) | 
					
						
						|  | if result: | 
					
						
						|  | layer_num, block_num = result.groups() | 
					
						
						|  | max_layer_num = max(max_layer_num, int(layer_num)) | 
					
						
						|  | max_block_num = max(max_block_num, int(block_num)) | 
					
						
						|  |  | 
					
						
						|  | depth = [max_block_num + 1 for _ in range(max_layer_num + 1)] | 
					
						
						|  |  | 
					
						
						|  | if "layers.0.blocks.1.attn.temperature" in state_keys: | 
					
						
						|  | num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0] | 
					
						
						|  | num_heads = [num_heads_num for _ in range(max_layer_num + 1)] | 
					
						
						|  | else: | 
					
						
						|  | num_heads = depth | 
					
						
						|  |  | 
					
						
						|  | embed_dim = state_dict["conv_first.weight"].shape[0] | 
					
						
						|  | expansion_factor = float( | 
					
						
						|  | state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "layers.0.conv.4.weight" in state_keys: | 
					
						
						|  | resi_connection = "3conv" | 
					
						
						|  | else: | 
					
						
						|  | resi_connection = "1conv" | 
					
						
						|  |  | 
					
						
						|  | if "layers.0.blocks.2.attn.attn_mask_0" in state_keys: | 
					
						
						|  | attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[ | 
					
						
						|  | "layers.0.blocks.2.attn.attn_mask_0" | 
					
						
						|  | ].shape | 
					
						
						|  |  | 
					
						
						|  | img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y)) | 
					
						
						|  |  | 
					
						
						|  | if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys: | 
					
						
						|  | split_sizes = ( | 
					
						
						|  | state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1 | 
					
						
						|  | ) | 
					
						
						|  | split_size = [int(x) for x in split_sizes] | 
					
						
						|  |  | 
					
						
						|  | self.in_nc = num_in_ch | 
					
						
						|  | self.out_nc = num_out_ch | 
					
						
						|  | self.num_feat = num_feat | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.depth = depth | 
					
						
						|  | self.scale = upscale | 
					
						
						|  | self.upsampler = upsampler | 
					
						
						|  | self.img_size = img_size | 
					
						
						|  | self.img_range = img_range | 
					
						
						|  | self.expansion_factor = expansion_factor | 
					
						
						|  | self.resi_connection = resi_connection | 
					
						
						|  | self.split_size = split_size | 
					
						
						|  |  | 
					
						
						|  | self.supports_fp16 = False | 
					
						
						|  | self.supports_bfp16 = True | 
					
						
						|  | self.min_size_restriction = 16 | 
					
						
						|  |  | 
					
						
						|  | num_in_ch = in_chans | 
					
						
						|  | num_out_ch = in_chans | 
					
						
						|  | num_feat = 64 | 
					
						
						|  | self.img_range = img_range | 
					
						
						|  | if in_chans == 3: | 
					
						
						|  | rgb_mean = (0.4488, 0.4371, 0.4040) | 
					
						
						|  | self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | 
					
						
						|  | else: | 
					
						
						|  | self.mean = torch.zeros(1, 1, 1, 1) | 
					
						
						|  | self.upscale = upscale | 
					
						
						|  | self.upsampler = upsampler | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_layers = len(depth) | 
					
						
						|  | self.use_chk = use_chk | 
					
						
						|  | self.num_features = ( | 
					
						
						|  | self.embed_dim | 
					
						
						|  | ) = embed_dim | 
					
						
						|  | heads = num_heads | 
					
						
						|  |  | 
					
						
						|  | self.before_RG = nn.Sequential( | 
					
						
						|  | Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | curr_dim = embed_dim | 
					
						
						|  | dpr = [ | 
					
						
						|  | x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth)) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList() | 
					
						
						|  | for i in range(self.num_layers): | 
					
						
						|  | layer = ResidualGroup( | 
					
						
						|  | dim=embed_dim, | 
					
						
						|  | num_heads=heads[i], | 
					
						
						|  | reso=img_size, | 
					
						
						|  | split_size=split_size, | 
					
						
						|  | expansion_factor=expansion_factor, | 
					
						
						|  | qkv_bias=qkv_bias, | 
					
						
						|  | qk_scale=qk_scale, | 
					
						
						|  | drop=drop_rate, | 
					
						
						|  | attn_drop=attn_drop_rate, | 
					
						
						|  | drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])], | 
					
						
						|  | act_layer=act_layer, | 
					
						
						|  | norm_layer=norm_layer, | 
					
						
						|  | depth=depth[i], | 
					
						
						|  | use_chk=use_chk, | 
					
						
						|  | resi_connection=resi_connection, | 
					
						
						|  | rg_idx=i, | 
					
						
						|  | ) | 
					
						
						|  | self.layers.append(layer) | 
					
						
						|  |  | 
					
						
						|  | self.norm = norm_layer(curr_dim) | 
					
						
						|  |  | 
					
						
						|  | if resi_connection == "1conv": | 
					
						
						|  | self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) | 
					
						
						|  | elif resi_connection == "3conv": | 
					
						
						|  |  | 
					
						
						|  | self.conv_after_body = nn.Sequential( | 
					
						
						|  | nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), | 
					
						
						|  | nn.LeakyReLU(negative_slope=0.2, inplace=True), | 
					
						
						|  | nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), | 
					
						
						|  | nn.LeakyReLU(negative_slope=0.2, inplace=True), | 
					
						
						|  | nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.upsampler == "pixelshuffle": | 
					
						
						|  |  | 
					
						
						|  | self.conv_before_upsample = nn.Sequential( | 
					
						
						|  | nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) | 
					
						
						|  | ) | 
					
						
						|  | self.upsample = Upsample(upscale, num_feat) | 
					
						
						|  | self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | 
					
						
						|  | elif self.upsampler == "pixelshuffledirect": | 
					
						
						|  |  | 
					
						
						|  | self.upsample = UpsampleOneStep( | 
					
						
						|  | upscale, embed_dim, num_out_ch, (img_size, img_size) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.apply(self._init_weights) | 
					
						
						|  | self.load_state_dict(state_dict, strict=True) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, m): | 
					
						
						|  | if isinstance(m, nn.Linear): | 
					
						
						|  | trunc_normal_(m.weight, std=0.02) | 
					
						
						|  | if isinstance(m, nn.Linear) and m.bias is not None: | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance( | 
					
						
						|  | m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d) | 
					
						
						|  | ): | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | nn.init.constant_(m.weight, 1.0) | 
					
						
						|  |  | 
					
						
						|  | def forward_features(self, x): | 
					
						
						|  | _, _, H, W = x.shape | 
					
						
						|  | x_size = [H, W] | 
					
						
						|  | x = self.before_RG(x) | 
					
						
						|  | for layer in self.layers: | 
					
						
						|  | x = layer(x, x_size) | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | """ | 
					
						
						|  | Input: x: (B, C, H, W) | 
					
						
						|  | """ | 
					
						
						|  | self.mean = self.mean.type_as(x) | 
					
						
						|  | x = (x - self.mean) * self.img_range | 
					
						
						|  |  | 
					
						
						|  | if self.upsampler == "pixelshuffle": | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_first(x) | 
					
						
						|  | x = self.conv_after_body(self.forward_features(x)) + x | 
					
						
						|  | x = self.conv_before_upsample(x) | 
					
						
						|  | x = self.conv_last(self.upsample(x)) | 
					
						
						|  | elif self.upsampler == "pixelshuffledirect": | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_first(x) | 
					
						
						|  | x = self.conv_after_body(self.forward_features(x)) + x | 
					
						
						|  | x = self.upsample(x) | 
					
						
						|  |  | 
					
						
						|  | x = x / self.img_range + self.mean | 
					
						
						|  | return x | 
					
						
						|  |  |