LayerDiffuse-gradio-unofficial
/
ComfyUI
/comfy_extras
/chainner_models
/architecture
/face
/arcface_arch.py
| import torch.nn as nn | |
| def conv3x3(inplanes, outplanes, stride=1): | |
| """A simple wrapper for 3x3 convolution with padding. | |
| Args: | |
| inplanes (int): Channel number of inputs. | |
| outplanes (int): Channel number of outputs. | |
| stride (int): Stride in convolution. Default: 1. | |
| """ | |
| return nn.Conv2d( | |
| inplanes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False | |
| ) | |
| class BasicBlock(nn.Module): | |
| """Basic residual block used in the ResNetArcFace architecture. | |
| Args: | |
| inplanes (int): Channel number of inputs. | |
| planes (int): Channel number of outputs. | |
| stride (int): Stride in convolution. Default: 1. | |
| downsample (nn.Module): The downsample module. Default: None. | |
| """ | |
| expansion = 1 # output channel expansion ratio | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class IRBlock(nn.Module): | |
| """Improved residual block (IR Block) used in the ResNetArcFace architecture. | |
| Args: | |
| inplanes (int): Channel number of inputs. | |
| planes (int): Channel number of outputs. | |
| stride (int): Stride in convolution. Default: 1. | |
| downsample (nn.Module): The downsample module. Default: None. | |
| use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. | |
| """ | |
| expansion = 1 # output channel expansion ratio | |
| def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): | |
| super(IRBlock, self).__init__() | |
| self.bn0 = nn.BatchNorm2d(inplanes) | |
| self.conv1 = conv3x3(inplanes, inplanes) | |
| self.bn1 = nn.BatchNorm2d(inplanes) | |
| self.prelu = nn.PReLU() | |
| self.conv2 = conv3x3(inplanes, planes, stride) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| self.use_se = use_se | |
| if self.use_se: | |
| self.se = SEBlock(planes) | |
| def forward(self, x): | |
| residual = x | |
| out = self.bn0(x) | |
| out = self.conv1(out) | |
| out = self.bn1(out) | |
| out = self.prelu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.use_se: | |
| out = self.se(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.prelu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| """Bottleneck block used in the ResNetArcFace architecture. | |
| Args: | |
| inplanes (int): Channel number of inputs. | |
| planes (int): Channel number of outputs. | |
| stride (int): Stride in convolution. Default: 1. | |
| downsample (nn.Module): The downsample module. Default: None. | |
| """ | |
| expansion = 4 # output channel expansion ratio | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.conv2 = nn.Conv2d( | |
| planes, planes, kernel_size=3, stride=stride, padding=1, bias=False | |
| ) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.conv3 = nn.Conv2d( | |
| planes, planes * self.expansion, kernel_size=1, bias=False | |
| ) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class SEBlock(nn.Module): | |
| """The squeeze-and-excitation block (SEBlock) used in the IRBlock. | |
| Args: | |
| channel (int): Channel number of inputs. | |
| reduction (int): Channel reduction ration. Default: 16. | |
| """ | |
| def __init__(self, channel, reduction=16): | |
| super(SEBlock, self).__init__() | |
| self.avg_pool = nn.AdaptiveAvgPool2d( | |
| 1 | |
| ) # pool to 1x1 without spatial information | |
| self.fc = nn.Sequential( | |
| nn.Linear(channel, channel // reduction), | |
| nn.PReLU(), | |
| nn.Linear(channel // reduction, channel), | |
| nn.Sigmoid(), | |
| ) | |
| def forward(self, x): | |
| b, c, _, _ = x.size() | |
| y = self.avg_pool(x).view(b, c) | |
| y = self.fc(y).view(b, c, 1, 1) | |
| return x * y | |
| class ResNetArcFace(nn.Module): | |
| """ArcFace with ResNet architectures. | |
| Ref: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. | |
| Args: | |
| block (str): Block used in the ArcFace architecture. | |
| layers (tuple(int)): Block numbers in each layer. | |
| use_se (bool): Whether use the SEBlock (squeeze and excitation block). Default: True. | |
| """ | |
| def __init__(self, block, layers, use_se=True): | |
| if block == "IRBlock": | |
| block = IRBlock | |
| self.inplanes = 64 | |
| self.use_se = use_se | |
| super(ResNetArcFace, self).__init__() | |
| self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(64) | |
| self.prelu = nn.PReLU() | |
| self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
| self.bn4 = nn.BatchNorm2d(512) | |
| self.dropout = nn.Dropout() | |
| self.fc5 = nn.Linear(512 * 8 * 8, 512) | |
| self.bn5 = nn.BatchNorm1d(512) | |
| # initialization | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.xavier_normal_(m.weight) | |
| elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.xavier_normal_(m.weight) | |
| nn.init.constant_(m.bias, 0) | |
| def _make_layer(self, block, planes, num_blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d( | |
| self.inplanes, | |
| planes * block.expansion, | |
| kernel_size=1, | |
| stride=stride, | |
| bias=False, | |
| ), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append( | |
| block(self.inplanes, planes, stride, downsample, use_se=self.use_se) | |
| ) | |
| self.inplanes = planes | |
| for _ in range(1, num_blocks): | |
| layers.append(block(self.inplanes, planes, use_se=self.use_se)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.prelu(x) | |
| x = self.maxpool(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.bn4(x) | |
| x = self.dropout(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.fc5(x) | |
| x = self.bn5(x) | |
| return x | |