better default values
Browse files- pipelines/controlnet.py +18 -12
pipelines/controlnet.py
CHANGED
|
@@ -69,18 +69,18 @@ class Pipeline:
|
|
| 69 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 70 |
)
|
| 71 |
steps: int = Field(
|
| 72 |
-
|
| 73 |
)
|
| 74 |
width: int = Field(
|
| 75 |
-
|
| 76 |
)
|
| 77 |
height: int = Field(
|
| 78 |
-
|
| 79 |
)
|
| 80 |
guidance_scale: float = Field(
|
| 81 |
-
0.
|
| 82 |
min=0,
|
| 83 |
-
max=
|
| 84 |
step=0.001,
|
| 85 |
title="Guidance Scale",
|
| 86 |
field="range",
|
|
@@ -196,16 +196,21 @@ class Pipeline:
|
|
| 196 |
image=[Image.new("RGB", (768, 768))],
|
| 197 |
control_image=[Image.new("RGB", (768, 768))],
|
| 198 |
)
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 207 |
generator = torch.manual_seed(params.seed)
|
| 208 |
-
prompt_embeds =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
control_image = self.canny_torch(
|
| 210 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 211 |
)
|
|
@@ -218,6 +223,7 @@ class Pipeline:
|
|
| 218 |
image=params.image,
|
| 219 |
control_image=control_image,
|
| 220 |
prompt_embeds=prompt_embeds,
|
|
|
|
| 221 |
generator=generator,
|
| 222 |
strength=strength,
|
| 223 |
num_inference_steps=steps,
|
|
|
|
| 69 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
| 70 |
)
|
| 71 |
steps: int = Field(
|
| 72 |
+
2, min=1, max=6, title="Steps", field="range", hide=True, id="steps"
|
| 73 |
)
|
| 74 |
width: int = Field(
|
| 75 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
| 76 |
)
|
| 77 |
height: int = Field(
|
| 78 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
| 79 |
)
|
| 80 |
guidance_scale: float = Field(
|
| 81 |
+
0.0,
|
| 82 |
min=0,
|
| 83 |
+
max=2,
|
| 84 |
step=0.001,
|
| 85 |
title="Guidance Scale",
|
| 86 |
field="range",
|
|
|
|
| 196 |
image=[Image.new("RGB", (768, 768))],
|
| 197 |
control_image=[Image.new("RGB", (768, 768))],
|
| 198 |
)
|
| 199 |
+
if args.compel:
|
| 200 |
+
self.compel_proc = Compel(
|
| 201 |
+
tokenizer=self.pipe.tokenizer,
|
| 202 |
+
text_encoder=self.pipe.text_encoder,
|
| 203 |
+
truncate_long_prompts=False,
|
| 204 |
+
)
|
| 205 |
|
| 206 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
| 207 |
generator = torch.manual_seed(params.seed)
|
| 208 |
+
prompt_embeds = None
|
| 209 |
+
control_image = None
|
| 210 |
+
prompt = params.prompt
|
| 211 |
+
if hasattr(self, "compel_proc"):
|
| 212 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
| 213 |
+
|
| 214 |
control_image = self.canny_torch(
|
| 215 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
| 216 |
)
|
|
|
|
| 223 |
image=params.image,
|
| 224 |
control_image=control_image,
|
| 225 |
prompt_embeds=prompt_embeds,
|
| 226 |
+
prompt=prompt,
|
| 227 |
generator=generator,
|
| 228 |
strength=strength,
|
| 229 |
num_inference_steps=steps,
|