Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	use tinyVAE
Browse files- app-img2img.py +3 -4
- latent_consistency_img2img.py +15 -5
    	
        app-img2img.py
    CHANGED
    
    | @@ -55,10 +55,9 @@ else: | |
| 55 | 
             
                    custom_pipeline="latent_consistency_img2img.py",
         | 
| 56 | 
             
                    custom_revision="main",
         | 
| 57 | 
             
                )
         | 
| 58 | 
            -
             | 
| 59 | 
            -
             | 
| 60 | 
            -
             | 
| 61 | 
            -
            # )
         | 
| 62 | 
             
            pipe.set_progress_bar_config(disable=True)
         | 
| 63 | 
             
            pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
         | 
| 64 | 
             
            pipe.unet.to(memory_format=torch.channels_last)
         | 
|  | |
| 55 | 
             
                    custom_pipeline="latent_consistency_img2img.py",
         | 
| 56 | 
             
                    custom_revision="main",
         | 
| 57 | 
             
                )
         | 
| 58 | 
            +
            pipe.vae = AutoencoderTiny.from_pretrained(
         | 
| 59 | 
            +
                "madebyollin/taesd", torch_dtype=torch.float16, use_safetensors=True
         | 
| 60 | 
            +
            )
         | 
|  | |
| 61 | 
             
            pipe.set_progress_bar_config(disable=True)
         | 
| 62 | 
             
            pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
         | 
| 63 | 
             
            pipe.unet.to(memory_format=torch.channels_last)
         | 
    	
        latent_consistency_img2img.py
    CHANGED
    
    | @@ -25,6 +25,7 @@ import torch | |
| 25 | 
             
            from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
         | 
| 26 |  | 
| 27 | 
             
            from diffusers import (
         | 
|  | |
| 28 | 
             
                AutoencoderKL,
         | 
| 29 | 
             
                ConfigMixin,
         | 
| 30 | 
             
                DiffusionPipeline,
         | 
| @@ -226,13 +227,22 @@ class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline): | |
| 226 | 
             
                            )
         | 
| 227 |  | 
| 228 | 
             
                        elif isinstance(generator, list):
         | 
| 229 | 
            -
                             | 
| 230 | 
            -
                                 | 
| 231 | 
            -
             | 
| 232 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 233 | 
             
                            init_latents = torch.cat(init_latents, dim=0)
         | 
| 234 | 
             
                        else:
         | 
| 235 | 
            -
                             | 
|  | |
|  | |
|  | |
| 236 |  | 
| 237 | 
             
                        init_latents = self.vae.config.scaling_factor * init_latents
         | 
| 238 |  | 
|  | |
| 25 | 
             
            from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
         | 
| 26 |  | 
| 27 | 
             
            from diffusers import (
         | 
| 28 | 
            +
                AutoencoderTiny,
         | 
| 29 | 
             
                AutoencoderKL,
         | 
| 30 | 
             
                ConfigMixin,
         | 
| 31 | 
             
                DiffusionPipeline,
         | 
|  | |
| 227 | 
             
                            )
         | 
| 228 |  | 
| 229 | 
             
                        elif isinstance(generator, list):
         | 
| 230 | 
            +
                            if isinstance(self.vae, AutoencoderTiny):
         | 
| 231 | 
            +
                                init_latents = [
         | 
| 232 | 
            +
                                    self.vae.encode(image[i : i + 1]).latents
         | 
| 233 | 
            +
                                    for i in range(batch_size)
         | 
| 234 | 
            +
                                ]
         | 
| 235 | 
            +
                            else:
         | 
| 236 | 
            +
                                init_latents = [
         | 
| 237 | 
            +
                                    self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i])
         | 
| 238 | 
            +
                                    for i in range(batch_size)
         | 
| 239 | 
            +
                                ]
         | 
| 240 | 
             
                            init_latents = torch.cat(init_latents, dim=0)
         | 
| 241 | 
             
                        else:
         | 
| 242 | 
            +
                            if isinstance(self.vae, AutoencoderTiny):
         | 
| 243 | 
            +
                                init_latents = self.vae.encode(image).latents
         | 
| 244 | 
            +
                            else:
         | 
| 245 | 
            +
                                init_latents = self.vae.encode(image).latent_dist.sample(generator)
         | 
| 246 |  | 
| 247 | 
             
                        init_latents = self.vae.config.scaling_factor * init_latents
         | 
| 248 |  | 
