Spaces:
Runtime error
Runtime error
better defaults
Browse files- README.md +3 -2
- app.py +1 -1
- config.py +16 -10
- pipelines/controlnelSD21Turbo.py +2 -2
- pipelines/controlnet.py +1 -1
- pipelines/controlnetLoraSD15.py +1 -1
- pipelines/controlnetLoraSDXL.py +1 -1
- pipelines/controlnetSDXLTurbo.py +1 -1
- pipelines/controlnetSegmindVegaRT.py +1 -1
- pipelines/img2img.py +1 -1
- pipelines/img2imgSD21Turbo.py +2 -2
- pipelines/img2imgSDXLTurbo.py +1 -1
- pipelines/img2imgSegmindVegaRT.py +1 -1
- pipelines/txt2img.py +1 -1
- pipelines/txt2imgLora.py +1 -1
- pipelines/txt2imgLoraSDXL.py +1 -1
README.md
CHANGED
|
@@ -28,8 +28,9 @@ python -m venv venv
|
|
| 28 |
source venv/bin/activate
|
| 29 |
pip3 install -r requirements.txt
|
| 30 |
cd frontend && npm install && npm run build && cd ..
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
# Pipelines
|
| 35 |
You can build your own pipeline following examples here [here](pipelines),
|
|
|
|
| 28 |
source venv/bin/activate
|
| 29 |
pip3 install -r requirements.txt
|
| 30 |
cd frontend && npm install && npm run build && cd ..
|
| 31 |
+
# fastest pipeline
|
| 32 |
+
python run.py --reload --pipeline img2imgSD21Turbo
|
| 33 |
+
```
|
| 34 |
|
| 35 |
# Pipelines
|
| 36 |
You can build your own pipeline following examples here [here](pipelines),
|
app.py
CHANGED
|
@@ -12,7 +12,7 @@ print("TORCH_DTYPE:", torch_dtype)
|
|
| 12 |
print("PIPELINE:", args.pipeline)
|
| 13 |
print("SAFETY_CHECKER:", args.safety_checker)
|
| 14 |
print("TORCH_COMPILE:", args.torch_compile)
|
| 15 |
-
print("USE_TAESD:", args.
|
| 16 |
print("COMPEL:", args.compel)
|
| 17 |
print("DEBUG:", args.debug)
|
| 18 |
|
|
|
|
| 12 |
print("PIPELINE:", args.pipeline)
|
| 13 |
print("SAFETY_CHECKER:", args.safety_checker)
|
| 14 |
print("TORCH_COMPILE:", args.torch_compile)
|
| 15 |
+
print("USE_TAESD:", args.taesd)
|
| 16 |
print("COMPEL:", args.compel)
|
| 17 |
print("DEBUG:", args.debug)
|
| 18 |
|
config.py
CHANGED
|
@@ -12,7 +12,7 @@ class Args(NamedTuple):
|
|
| 12 |
timeout: float
|
| 13 |
safety_checker: bool
|
| 14 |
torch_compile: bool
|
| 15 |
-
|
| 16 |
pipeline: str
|
| 17 |
ssl_certfile: str
|
| 18 |
ssl_keyfile: str
|
|
@@ -24,7 +24,7 @@ MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
|
| 24 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
| 25 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) == "True"
|
| 26 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) == "True"
|
| 27 |
-
USE_TAESD = os.environ.get("USE_TAESD",
|
| 28 |
default_host = os.getenv("HOST", "0.0.0.0")
|
| 29 |
default_port = int(os.getenv("PORT", "7860"))
|
| 30 |
default_mode = os.getenv("MODE", "default")
|
|
@@ -38,7 +38,7 @@ parser.add_argument(
|
|
| 38 |
)
|
| 39 |
parser.add_argument(
|
| 40 |
"--max-queue-size",
|
| 41 |
-
"
|
| 42 |
type=int,
|
| 43 |
default=MAX_QUEUE_SIZE,
|
| 44 |
help="Max Queue Size",
|
|
@@ -46,23 +46,28 @@ parser.add_argument(
|
|
| 46 |
parser.add_argument("--timeout", type=float, default=TIMEOUT, help="Timeout")
|
| 47 |
parser.add_argument(
|
| 48 |
"--safety-checker",
|
| 49 |
-
"
|
| 50 |
action="store_true",
|
| 51 |
default=SAFETY_CHECKER,
|
| 52 |
help="Safety Checker",
|
| 53 |
)
|
| 54 |
parser.add_argument(
|
| 55 |
"--torch-compile",
|
| 56 |
-
"
|
| 57 |
action="store_true",
|
| 58 |
default=TORCH_COMPILE,
|
| 59 |
help="Torch Compile",
|
| 60 |
)
|
| 61 |
parser.add_argument(
|
| 62 |
-
"--
|
| 63 |
-
"
|
| 64 |
action="store_true",
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
help="Use Tiny Autoencoder",
|
| 67 |
)
|
| 68 |
parser.add_argument(
|
|
@@ -73,14 +78,14 @@ parser.add_argument(
|
|
| 73 |
)
|
| 74 |
parser.add_argument(
|
| 75 |
"--ssl-certfile",
|
| 76 |
-
"
|
| 77 |
type=str,
|
| 78 |
default=None,
|
| 79 |
help="SSL certfile",
|
| 80 |
)
|
| 81 |
parser.add_argument(
|
| 82 |
"--ssl-keyfile",
|
| 83 |
-
"
|
| 84 |
type=str,
|
| 85 |
default=None,
|
| 86 |
help="SSL keyfile",
|
|
@@ -97,5 +102,6 @@ parser.add_argument(
|
|
| 97 |
default=False,
|
| 98 |
help="Compel",
|
| 99 |
)
|
|
|
|
| 100 |
|
| 101 |
args = Args(**vars(parser.parse_args()))
|
|
|
|
| 12 |
timeout: float
|
| 13 |
safety_checker: bool
|
| 14 |
torch_compile: bool
|
| 15 |
+
taesd: bool
|
| 16 |
pipeline: str
|
| 17 |
ssl_certfile: str
|
| 18 |
ssl_keyfile: str
|
|
|
|
| 24 |
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
| 25 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) == "True"
|
| 26 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) == "True"
|
| 27 |
+
USE_TAESD = os.environ.get("USE_TAESD", "True") == "True"
|
| 28 |
default_host = os.getenv("HOST", "0.0.0.0")
|
| 29 |
default_port = int(os.getenv("PORT", "7860"))
|
| 30 |
default_mode = os.getenv("MODE", "default")
|
|
|
|
| 38 |
)
|
| 39 |
parser.add_argument(
|
| 40 |
"--max-queue-size",
|
| 41 |
+
dest="max_queue_size",
|
| 42 |
type=int,
|
| 43 |
default=MAX_QUEUE_SIZE,
|
| 44 |
help="Max Queue Size",
|
|
|
|
| 46 |
parser.add_argument("--timeout", type=float, default=TIMEOUT, help="Timeout")
|
| 47 |
parser.add_argument(
|
| 48 |
"--safety-checker",
|
| 49 |
+
dest="safety_checker",
|
| 50 |
action="store_true",
|
| 51 |
default=SAFETY_CHECKER,
|
| 52 |
help="Safety Checker",
|
| 53 |
)
|
| 54 |
parser.add_argument(
|
| 55 |
"--torch-compile",
|
| 56 |
+
dest="torch_compile",
|
| 57 |
action="store_true",
|
| 58 |
default=TORCH_COMPILE,
|
| 59 |
help="Torch Compile",
|
| 60 |
)
|
| 61 |
parser.add_argument(
|
| 62 |
+
"--taesd",
|
| 63 |
+
dest="taesd",
|
| 64 |
action="store_true",
|
| 65 |
+
help="Use Tiny Autoencoder",
|
| 66 |
+
)
|
| 67 |
+
parser.add_argument(
|
| 68 |
+
"--no-taesd",
|
| 69 |
+
dest="taesd",
|
| 70 |
+
action="store_false",
|
| 71 |
help="Use Tiny Autoencoder",
|
| 72 |
)
|
| 73 |
parser.add_argument(
|
|
|
|
| 78 |
)
|
| 79 |
parser.add_argument(
|
| 80 |
"--ssl-certfile",
|
| 81 |
+
dest="ssl_certfile",
|
| 82 |
type=str,
|
| 83 |
default=None,
|
| 84 |
help="SSL certfile",
|
| 85 |
)
|
| 86 |
parser.add_argument(
|
| 87 |
"--ssl-keyfile",
|
| 88 |
+
dest="ssl_keyfile",
|
| 89 |
type=str,
|
| 90 |
default=None,
|
| 91 |
help="SSL keyfile",
|
|
|
|
| 102 |
default=False,
|
| 103 |
help="Compel",
|
| 104 |
)
|
| 105 |
+
parser.set_defaults(taesd=USE_TAESD)
|
| 106 |
|
| 107 |
args = Args(**vars(parser.parse_args()))
|
pipelines/controlnelSD21Turbo.py
CHANGED
|
@@ -176,7 +176,7 @@ class Pipeline:
|
|
| 176 |
safety_checker=None,
|
| 177 |
)
|
| 178 |
|
| 179 |
-
if args.
|
| 180 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 181 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 182 |
).to(device)
|
|
@@ -196,7 +196,7 @@ class Pipeline:
|
|
| 196 |
text_encoder=self.pipe.text_encoder,
|
| 197 |
truncate_long_prompts=True,
|
| 198 |
)
|
| 199 |
-
if args.
|
| 200 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 201 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 202 |
).to(device)
|
|
|
|
| 176 |
safety_checker=None,
|
| 177 |
)
|
| 178 |
|
| 179 |
+
if args.taesd:
|
| 180 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 181 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 182 |
).to(device)
|
|
|
|
| 196 |
text_encoder=self.pipe.text_encoder,
|
| 197 |
truncate_long_prompts=True,
|
| 198 |
)
|
| 199 |
+
if args.taesd:
|
| 200 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 201 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 202 |
).to(device)
|
pipelines/controlnet.py
CHANGED
|
@@ -169,7 +169,7 @@ class Pipeline:
|
|
| 169 |
safety_checker=None,
|
| 170 |
controlnet=controlnet_canny,
|
| 171 |
)
|
| 172 |
-
if args.
|
| 173 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 174 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 175 |
).to(device)
|
|
|
|
| 169 |
safety_checker=None,
|
| 170 |
controlnet=controlnet_canny,
|
| 171 |
)
|
| 172 |
+
if args.taesd:
|
| 173 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 174 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 175 |
).to(device)
|
pipelines/controlnetLoraSD15.py
CHANGED
|
@@ -202,7 +202,7 @@ class Pipeline:
|
|
| 202 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 203 |
pipe.enable_attention_slicing()
|
| 204 |
|
| 205 |
-
if args.
|
| 206 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
| 207 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 208 |
).to(device)
|
|
|
|
| 202 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
| 203 |
pipe.enable_attention_slicing()
|
| 204 |
|
| 205 |
+
if args.taesd:
|
| 206 |
pipe.vae = AutoencoderTiny.from_pretrained(
|
| 207 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 208 |
).to(device)
|
pipelines/controlnetLoraSDXL.py
CHANGED
|
@@ -211,7 +211,7 @@ class Pipeline:
|
|
| 211 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 212 |
requires_pooled=[False, True],
|
| 213 |
)
|
| 214 |
-
if args.
|
| 215 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 216 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 217 |
).to(device)
|
|
|
|
| 211 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 212 |
requires_pooled=[False, True],
|
| 213 |
)
|
| 214 |
+
if args.taesd:
|
| 215 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 216 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 217 |
).to(device)
|
pipelines/controlnetSDXLTurbo.py
CHANGED
|
@@ -199,7 +199,7 @@ class Pipeline:
|
|
| 199 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 200 |
requires_pooled=[False, True],
|
| 201 |
)
|
| 202 |
-
if args.
|
| 203 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 204 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 205 |
).to(device)
|
|
|
|
| 199 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 200 |
requires_pooled=[False, True],
|
| 201 |
)
|
| 202 |
+
if args.taesd:
|
| 203 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 204 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 205 |
).to(device)
|
pipelines/controlnetSegmindVegaRT.py
CHANGED
|
@@ -208,7 +208,7 @@ class Pipeline:
|
|
| 208 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 209 |
requires_pooled=[False, True],
|
| 210 |
)
|
| 211 |
-
if args.
|
| 212 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 213 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 214 |
).to(device)
|
|
|
|
| 208 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 209 |
requires_pooled=[False, True],
|
| 210 |
)
|
| 211 |
+
if args.taesd:
|
| 212 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 213 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 214 |
).to(device)
|
pipelines/img2img.py
CHANGED
|
@@ -102,7 +102,7 @@ class Pipeline:
|
|
| 102 |
base_model,
|
| 103 |
safety_checker=None,
|
| 104 |
)
|
| 105 |
-
if args.
|
| 106 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 108 |
).to(device)
|
|
|
|
| 102 |
base_model,
|
| 103 |
safety_checker=None,
|
| 104 |
)
|
| 105 |
+
if args.taesd:
|
| 106 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 108 |
).to(device)
|
pipelines/img2imgSD21Turbo.py
CHANGED
|
@@ -99,7 +99,7 @@ class Pipeline:
|
|
| 99 |
base_model,
|
| 100 |
safety_checker=None,
|
| 101 |
)
|
| 102 |
-
if args.
|
| 103 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 104 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 105 |
).to(device)
|
|
@@ -158,7 +158,7 @@ class Pipeline:
|
|
| 158 |
generator=generator,
|
| 159 |
strength=strength,
|
| 160 |
num_inference_steps=steps,
|
| 161 |
-
guidance_scale=1.
|
| 162 |
width=params.width,
|
| 163 |
height=params.height,
|
| 164 |
output_type="pil",
|
|
|
|
| 99 |
base_model,
|
| 100 |
safety_checker=None,
|
| 101 |
)
|
| 102 |
+
if args.taesd:
|
| 103 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 104 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 105 |
).to(device)
|
|
|
|
| 158 |
generator=generator,
|
| 159 |
strength=strength,
|
| 160 |
num_inference_steps=steps,
|
| 161 |
+
guidance_scale=1.1,
|
| 162 |
width=params.width,
|
| 163 |
height=params.height,
|
| 164 |
output_type="pil",
|
pipelines/img2imgSDXLTurbo.py
CHANGED
|
@@ -110,7 +110,7 @@ class Pipeline:
|
|
| 110 |
base_model,
|
| 111 |
safety_checker=None,
|
| 112 |
)
|
| 113 |
-
if args.
|
| 114 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 116 |
).to(device)
|
|
|
|
| 110 |
base_model,
|
| 111 |
safety_checker=None,
|
| 112 |
)
|
| 113 |
+
if args.taesd:
|
| 114 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 116 |
).to(device)
|
pipelines/img2imgSegmindVegaRT.py
CHANGED
|
@@ -116,7 +116,7 @@ class Pipeline:
|
|
| 116 |
safety_checker=None,
|
| 117 |
variant="fp16",
|
| 118 |
)
|
| 119 |
-
if args.
|
| 120 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 121 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 122 |
).to(device)
|
|
|
|
| 116 |
safety_checker=None,
|
| 117 |
variant="fp16",
|
| 118 |
)
|
| 119 |
+
if args.taesd:
|
| 120 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 121 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 122 |
).to(device)
|
pipelines/txt2img.py
CHANGED
|
@@ -85,7 +85,7 @@ class Pipeline:
|
|
| 85 |
self.pipe = DiffusionPipeline.from_pretrained(
|
| 86 |
base_model, safety_checker=None
|
| 87 |
)
|
| 88 |
-
if args.
|
| 89 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 91 |
).to(device)
|
|
|
|
| 85 |
self.pipe = DiffusionPipeline.from_pretrained(
|
| 86 |
base_model, safety_checker=None
|
| 87 |
)
|
| 88 |
+
if args.taesd:
|
| 89 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 91 |
).to(device)
|
pipelines/txt2imgLora.py
CHANGED
|
@@ -92,7 +92,7 @@ class Pipeline:
|
|
| 92 |
self.pipe = DiffusionPipeline.from_pretrained(
|
| 93 |
base_model, safety_checker=None
|
| 94 |
)
|
| 95 |
-
if args.
|
| 96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 98 |
).to(device)
|
|
|
|
| 92 |
self.pipe = DiffusionPipeline.from_pretrained(
|
| 93 |
base_model, safety_checker=None
|
| 94 |
)
|
| 95 |
+
if args.taesd:
|
| 96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 98 |
).to(device)
|
pipelines/txt2imgLoraSDXL.py
CHANGED
|
@@ -123,7 +123,7 @@ class Pipeline:
|
|
| 123 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 124 |
requires_pooled=[False, True],
|
| 125 |
)
|
| 126 |
-
if args.
|
| 127 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 128 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 129 |
).to(device)
|
|
|
|
| 123 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
| 124 |
requires_pooled=[False, True],
|
| 125 |
)
|
| 126 |
+
if args.taesd:
|
| 127 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
| 128 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
| 129 |
).to(device)
|