Spaces:
Running
on
Zero
Running
on
Zero
remove API
Browse files- README.md +1 -1
- app.py +92 -138
- requirements.txt +3 -2
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: red
|
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
-
sdk_version:
|
| 9 |
pinned: false
|
| 10 |
disable_embedding: true
|
| 11 |
short_description: Audio-based video editing using AI-generated transcription
|
|
|
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
+
sdk_version: 5.49.1
|
| 9 |
pinned: false
|
| 10 |
disable_embedding: true
|
| 11 |
short_description: Audio-based video editing using AI-generated transcription
|
app.py
CHANGED
|
@@ -1,61 +1,49 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
| 3 |
from difflib import Differ
|
| 4 |
import ffmpeg
|
| 5 |
-
import os
|
| 6 |
from pathlib import Path
|
| 7 |
-
import time
|
| 8 |
import aiohttp
|
| 9 |
import asyncio
|
| 10 |
-
|
| 11 |
|
| 12 |
# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
|
| 13 |
API_BACKEND = True
|
| 14 |
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
|
| 15 |
-
|
| 16 |
-
MODEL = "facebook/wav2vec2-base-960h"
|
| 17 |
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
from transformers import pipeline
|
| 31 |
-
|
| 32 |
-
# is cuda available?
|
| 33 |
-
cuda = torch.device(
|
| 34 |
-
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
| 35 |
-
device = 0 if torch.cuda.is_available() else -1
|
| 36 |
-
speech_recognizer = pipeline(
|
| 37 |
-
task="automatic-speech-recognition",
|
| 38 |
-
model=f'{MODEL}',
|
| 39 |
-
tokenizer=f'{MODEL}',
|
| 40 |
-
framework="pt",
|
| 41 |
-
device=device,
|
| 42 |
-
)
|
| 43 |
|
| 44 |
videos_out_path = Path("./videos_out")
|
| 45 |
videos_out_path.mkdir(parents=True, exist_ok=True)
|
| 46 |
|
| 47 |
-
samples_data = sorted(Path(
|
| 48 |
SAMPLES = []
|
| 49 |
for file in samples_data:
|
| 50 |
with open(file) as f:
|
| 51 |
sample = json.load(f)
|
| 52 |
SAMPLES.append(sample)
|
| 53 |
-
VIDEOS = list(map(lambda x: [x[
|
| 54 |
|
| 55 |
total_inferences_since_reboot = 415
|
| 56 |
total_cuts_since_reboot = 1539
|
| 57 |
|
| 58 |
|
|
|
|
| 59 |
async def speech_to_text(video_file_path):
|
| 60 |
"""
|
| 61 |
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
|
|
@@ -63,68 +51,52 @@ async def speech_to_text(video_file_path):
|
|
| 63 |
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
| 64 |
"""
|
| 65 |
global total_inferences_since_reboot
|
| 66 |
-
if
|
| 67 |
raise ValueError("Error no video input")
|
| 68 |
|
| 69 |
video_path = Path(video_file_path)
|
| 70 |
try:
|
| 71 |
# convert video to audio 16k using PIPE to audio_memory
|
| 72 |
-
audio_memory, _ =
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
raise RuntimeError("Error converting video to audio")
|
| 76 |
|
| 77 |
ping("speech_to_text")
|
| 78 |
-
last_time = time.time()
|
| 79 |
-
if API_BACKEND:
|
| 80 |
-
# Using Inference API https://huggingface.co/inference-api
|
| 81 |
-
# try twice, because the model must be loaded
|
| 82 |
-
for i in range(10):
|
| 83 |
-
for tries in range(4):
|
| 84 |
-
print(f'Transcribing from API attempt {tries}')
|
| 85 |
-
try:
|
| 86 |
-
inference_reponse = await query_api(audio_memory)
|
| 87 |
-
print(inference_reponse)
|
| 88 |
-
transcription = inference_reponse["text"].lower()
|
| 89 |
-
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
|
| 90 |
-
for chunk in inference_reponse['chunks']]
|
| 91 |
-
|
| 92 |
-
total_inferences_since_reboot += 1
|
| 93 |
-
print("\n\ntotal_inferences_since_reboot: ",
|
| 94 |
-
total_inferences_since_reboot, "\n\n")
|
| 95 |
-
return (transcription, transcription, timestamps)
|
| 96 |
-
except Exception as e:
|
| 97 |
-
print(e)
|
| 98 |
-
if 'error' in inference_reponse and 'estimated_time' in inference_reponse:
|
| 99 |
-
wait_time = inference_reponse['estimated_time']
|
| 100 |
-
print("Waiting for model to load....", wait_time)
|
| 101 |
-
# wait for loading model
|
| 102 |
-
# 5 seconds plus for certanty
|
| 103 |
-
await asyncio.sleep(wait_time + 5.0)
|
| 104 |
-
elif 'error' in inference_reponse:
|
| 105 |
-
raise RuntimeError("Error Fetching API",
|
| 106 |
-
inference_reponse['error'])
|
| 107 |
-
else:
|
| 108 |
-
break
|
| 109 |
-
else:
|
| 110 |
-
raise RuntimeError(inference_reponse, "Error Fetching API")
|
| 111 |
-
else:
|
| 112 |
-
|
| 113 |
-
try:
|
| 114 |
-
print(f'Transcribing via local model')
|
| 115 |
-
output = speech_recognizer(
|
| 116 |
-
audio_memory, return_timestamps="char", chunk_length_s=10, stride_length_s=(4, 2))
|
| 117 |
-
|
| 118 |
-
transcription = output["text"].lower()
|
| 119 |
-
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0].tolist(), chunk["timestamp"][1].tolist()]
|
| 120 |
-
for chunk in output['chunks']]
|
| 121 |
-
total_inferences_since_reboot += 1
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
|
| 130 |
async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
@@ -136,14 +108,14 @@ async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
| 136 |
|
| 137 |
video_path = Path(video_in)
|
| 138 |
video_file_name = video_path.stem
|
| 139 |
-
if
|
| 140 |
raise ValueError("Inputs undefined")
|
| 141 |
|
| 142 |
d = Differ()
|
| 143 |
# compare original transcription with edit text
|
| 144 |
diff_chars = d.compare(transcription, text_in)
|
| 145 |
# remove all text aditions from diff
|
| 146 |
-
filtered = list(filter(lambda x: x[0] !=
|
| 147 |
|
| 148 |
# filter timestamps to be removed
|
| 149 |
# timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
|
|
@@ -152,8 +124,8 @@ async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
| 152 |
# groupping character timestamps so there are less cuts
|
| 153 |
idx = 0
|
| 154 |
grouped = {}
|
| 155 |
-
for
|
| 156 |
-
if a[0] !=
|
| 157 |
if idx in grouped:
|
| 158 |
grouped[idx].append(b)
|
| 159 |
else:
|
|
@@ -165,24 +137,27 @@ async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
| 165 |
# after grouping, gets the lower and upter start and time for each group
|
| 166 |
timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]
|
| 167 |
|
| 168 |
-
between_str =
|
| 169 |
-
map(lambda t: f
|
|
|
|
| 170 |
|
| 171 |
if timestamps_to_cut:
|
| 172 |
video_file = ffmpeg.input(video_in)
|
| 173 |
-
video = video_file.video.filter(
|
| 174 |
-
"
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
| 179 |
ffmpeg.concat(video, audio, v=1, a=1).output(
|
| 180 |
-
output_video
|
|
|
|
| 181 |
else:
|
| 182 |
output_video = video_in
|
| 183 |
|
| 184 |
-
tokens = [(token[2:], token[0] if token[0] != " " else None)
|
| 185 |
-
for token in filtered]
|
| 186 |
|
| 187 |
total_cuts_since_reboot += 1
|
| 188 |
ping("video_cuts")
|
|
@@ -190,40 +165,15 @@ async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
| 190 |
return (tokens, output_video)
|
| 191 |
|
| 192 |
|
| 193 |
-
async def query_api(audio_bytes: bytes):
|
| 194 |
-
"""
|
| 195 |
-
Query for Huggingface Inference API for Automatic Speech Recognition task
|
| 196 |
-
"""
|
| 197 |
-
payload = json.dumps({
|
| 198 |
-
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
|
| 199 |
-
"parameters": {
|
| 200 |
-
"return_timestamps": "char",
|
| 201 |
-
"chunk_length_s": 10,
|
| 202 |
-
"stride_length_s": [4, 2]
|
| 203 |
-
},
|
| 204 |
-
"options": {"use_gpu": False}
|
| 205 |
-
}).encode("utf-8")
|
| 206 |
-
async with aiohttp.ClientSession() as session:
|
| 207 |
-
async with session.post(API_URL, headers=headers, data=payload) as response:
|
| 208 |
-
print("API Response: ", response.status)
|
| 209 |
-
if response.headers['Content-Type'] == 'application/json':
|
| 210 |
-
return await response.json()
|
| 211 |
-
elif response.headers['Content-Type'] == 'application/octet-stream':
|
| 212 |
-
return await response.read()
|
| 213 |
-
elif response.headers['Content-Type'] == 'text/plain':
|
| 214 |
-
return await response.text()
|
| 215 |
-
else:
|
| 216 |
-
raise RuntimeError("Error Fetching API")
|
| 217 |
-
|
| 218 |
-
|
| 219 |
def ping(name):
|
| 220 |
-
url = f
|
| 221 |
print("ping: ", url)
|
| 222 |
|
| 223 |
async def req():
|
| 224 |
async with aiohttp.ClientSession() as session:
|
| 225 |
async with session.get(url) as response:
|
| 226 |
print("pong: ", response.status)
|
|
|
|
| 227 |
asyncio.create_task(req())
|
| 228 |
|
| 229 |
|
|
@@ -257,13 +207,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 257 |
""")
|
| 258 |
|
| 259 |
with gr.Row():
|
| 260 |
-
|
| 261 |
examples.render()
|
| 262 |
|
| 263 |
def load_example(id):
|
| 264 |
-
video = SAMPLES[id][
|
| 265 |
-
transcription = SAMPLES[id][
|
| 266 |
-
timestamps = SAMPLES[id][
|
| 267 |
|
| 268 |
return (video, transcription, transcription, timestamps)
|
| 269 |
|
|
@@ -271,13 +220,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 271 |
load_example,
|
| 272 |
inputs=[examples],
|
| 273 |
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
| 274 |
-
queue=False
|
|
|
|
| 275 |
with gr.Row():
|
| 276 |
with gr.Column():
|
| 277 |
video_in.render()
|
| 278 |
transcribe_btn = gr.Button("Transcribe Audio")
|
| 279 |
-
transcribe_btn.click(
|
| 280 |
-
text_in, transcription_var, timestamps_var]
|
|
|
|
| 281 |
|
| 282 |
with gr.Row():
|
| 283 |
gr.Markdown("""
|
|
@@ -290,13 +241,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 290 |
with gr.Row():
|
| 291 |
cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
|
| 292 |
# send audio path and hidden variables
|
| 293 |
-
cut_btn.click(
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
reset_transcription = gr.Button(
|
| 297 |
-
"Reset to last trascription", elem_id="reset_btn"
|
| 298 |
-
|
| 299 |
-
|
| 300 |
with gr.Column():
|
| 301 |
video_out.render()
|
| 302 |
diff_out.render()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import pipeline
|
| 3 |
import gradio as gr
|
| 4 |
import json
|
| 5 |
from difflib import Differ
|
| 6 |
import ffmpeg
|
|
|
|
| 7 |
from pathlib import Path
|
|
|
|
| 8 |
import aiohttp
|
| 9 |
import asyncio
|
| 10 |
+
import spaces
|
| 11 |
|
| 12 |
# Set true if you're using huggingface inference API API https://huggingface.co/inference-api
|
| 13 |
API_BACKEND = True
|
| 14 |
# MODEL = 'facebook/wav2vec2-large-960h-lv60-self'
|
| 15 |
+
MODEL = "facebook/wav2vec2-large-960h"
|
| 16 |
+
# MODEL = "facebook/wav2vec2-base-960h"
|
| 17 |
# MODEL = "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# is cuda available?
|
| 21 |
+
cuda = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 22 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 23 |
+
speech_recognizer = pipeline(
|
| 24 |
+
task="automatic-speech-recognition",
|
| 25 |
+
model=f"{MODEL}",
|
| 26 |
+
tokenizer=f"{MODEL}",
|
| 27 |
+
framework="pt",
|
| 28 |
+
device=device,
|
| 29 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
videos_out_path = Path("./videos_out")
|
| 32 |
videos_out_path.mkdir(parents=True, exist_ok=True)
|
| 33 |
|
| 34 |
+
samples_data = sorted(Path("examples").glob("*.json"))
|
| 35 |
SAMPLES = []
|
| 36 |
for file in samples_data:
|
| 37 |
with open(file) as f:
|
| 38 |
sample = json.load(f)
|
| 39 |
SAMPLES.append(sample)
|
| 40 |
+
VIDEOS = list(map(lambda x: [x["video"]], SAMPLES))
|
| 41 |
|
| 42 |
total_inferences_since_reboot = 415
|
| 43 |
total_cuts_since_reboot = 1539
|
| 44 |
|
| 45 |
|
| 46 |
+
@spaces.GPU(duration=120)
|
| 47 |
async def speech_to_text(video_file_path):
|
| 48 |
"""
|
| 49 |
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
|
|
|
|
| 51 |
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
| 52 |
"""
|
| 53 |
global total_inferences_since_reboot
|
| 54 |
+
if video_file_path == None:
|
| 55 |
raise ValueError("Error no video input")
|
| 56 |
|
| 57 |
video_path = Path(video_file_path)
|
| 58 |
try:
|
| 59 |
# convert video to audio 16k using PIPE to audio_memory
|
| 60 |
+
audio_memory, _ = (
|
| 61 |
+
ffmpeg.input(video_path)
|
| 62 |
+
.output("-", format="wav", ac=1, ar="16k")
|
| 63 |
+
.overwrite_output()
|
| 64 |
+
.global_args("-loglevel", "quiet")
|
| 65 |
+
.run(capture_stdout=True)
|
| 66 |
+
)
|
| 67 |
except Exception as e:
|
| 68 |
raise RuntimeError("Error converting video to audio")
|
| 69 |
|
| 70 |
ping("speech_to_text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
try:
|
| 73 |
+
print(f"Transcribing via local model")
|
| 74 |
+
output = speech_recognizer(
|
| 75 |
+
audio_memory,
|
| 76 |
+
return_timestamps="char",
|
| 77 |
+
chunk_length_s=10,
|
| 78 |
+
stride_length_s=(4, 2),
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
transcription = output["text"].lower()
|
| 82 |
+
timestamps = [
|
| 83 |
+
[
|
| 84 |
+
chunk["text"].lower(),
|
| 85 |
+
chunk["timestamp"][0].tolist(),
|
| 86 |
+
chunk["timestamp"][1].tolist(),
|
| 87 |
+
]
|
| 88 |
+
for chunk in output["chunks"]
|
| 89 |
+
]
|
| 90 |
+
total_inferences_since_reboot += 1
|
| 91 |
+
|
| 92 |
+
print(
|
| 93 |
+
"\n\ntotal_inferences_since_reboot: ",
|
| 94 |
+
total_inferences_since_reboot,
|
| 95 |
+
"\n\n",
|
| 96 |
+
)
|
| 97 |
+
return (transcription, transcription, timestamps)
|
| 98 |
+
except Exception as e:
|
| 99 |
+
raise RuntimeError("Error Running inference with local model", e)
|
| 100 |
|
| 101 |
|
| 102 |
async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
|
|
| 108 |
|
| 109 |
video_path = Path(video_in)
|
| 110 |
video_file_name = video_path.stem
|
| 111 |
+
if video_in == None or text_in == None or transcription == None:
|
| 112 |
raise ValueError("Inputs undefined")
|
| 113 |
|
| 114 |
d = Differ()
|
| 115 |
# compare original transcription with edit text
|
| 116 |
diff_chars = d.compare(transcription, text_in)
|
| 117 |
# remove all text aditions from diff
|
| 118 |
+
filtered = list(filter(lambda x: x[0] != "+", diff_chars))
|
| 119 |
|
| 120 |
# filter timestamps to be removed
|
| 121 |
# timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
|
|
|
|
| 124 |
# groupping character timestamps so there are less cuts
|
| 125 |
idx = 0
|
| 126 |
grouped = {}
|
| 127 |
+
for a, b in zip(filtered, timestamps):
|
| 128 |
+
if a[0] != "-":
|
| 129 |
if idx in grouped:
|
| 130 |
grouped[idx].append(b)
|
| 131 |
else:
|
|
|
|
| 137 |
# after grouping, gets the lower and upter start and time for each group
|
| 138 |
timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]
|
| 139 |
|
| 140 |
+
between_str = "+".join(
|
| 141 |
+
map(lambda t: f"between(t,{t[0]},{t[1]})", timestamps_to_cut)
|
| 142 |
+
)
|
| 143 |
|
| 144 |
if timestamps_to_cut:
|
| 145 |
video_file = ffmpeg.input(video_in)
|
| 146 |
+
video = video_file.video.filter("select", f"({between_str})").filter(
|
| 147 |
+
"setpts", "N/FRAME_RATE/TB"
|
| 148 |
+
)
|
| 149 |
+
audio = video_file.audio.filter("aselect", f"({between_str})").filter(
|
| 150 |
+
"asetpts", "N/SR/TB"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
output_video = f"./videos_out/{video_file_name}.mp4"
|
| 154 |
ffmpeg.concat(video, audio, v=1, a=1).output(
|
| 155 |
+
output_video
|
| 156 |
+
).overwrite_output().global_args("-loglevel", "quiet").run()
|
| 157 |
else:
|
| 158 |
output_video = video_in
|
| 159 |
|
| 160 |
+
tokens = [(token[2:], token[0] if token[0] != " " else None) for token in filtered]
|
|
|
|
| 161 |
|
| 162 |
total_cuts_since_reboot += 1
|
| 163 |
ping("video_cuts")
|
|
|
|
| 165 |
return (tokens, output_video)
|
| 166 |
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
def ping(name):
|
| 169 |
+
url = f"https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}"
|
| 170 |
print("ping: ", url)
|
| 171 |
|
| 172 |
async def req():
|
| 173 |
async with aiohttp.ClientSession() as session:
|
| 174 |
async with session.get(url) as response:
|
| 175 |
print("pong: ", response.status)
|
| 176 |
+
|
| 177 |
asyncio.create_task(req())
|
| 178 |
|
| 179 |
|
|
|
|
| 207 |
""")
|
| 208 |
|
| 209 |
with gr.Row():
|
|
|
|
| 210 |
examples.render()
|
| 211 |
|
| 212 |
def load_example(id):
|
| 213 |
+
video = SAMPLES[id]["video"]
|
| 214 |
+
transcription = SAMPLES[id]["transcription"].lower()
|
| 215 |
+
timestamps = SAMPLES[id]["timestamps"]
|
| 216 |
|
| 217 |
return (video, transcription, transcription, timestamps)
|
| 218 |
|
|
|
|
| 220 |
load_example,
|
| 221 |
inputs=[examples],
|
| 222 |
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
| 223 |
+
queue=False,
|
| 224 |
+
)
|
| 225 |
with gr.Row():
|
| 226 |
with gr.Column():
|
| 227 |
video_in.render()
|
| 228 |
transcribe_btn = gr.Button("Transcribe Audio")
|
| 229 |
+
transcribe_btn.click(
|
| 230 |
+
speech_to_text, [video_in], [text_in, transcription_var, timestamps_var]
|
| 231 |
+
)
|
| 232 |
|
| 233 |
with gr.Row():
|
| 234 |
gr.Markdown("""
|
|
|
|
| 241 |
with gr.Row():
|
| 242 |
cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
|
| 243 |
# send audio path and hidden variables
|
| 244 |
+
cut_btn.click(
|
| 245 |
+
cut_timestamps_to_video,
|
| 246 |
+
[video_in, transcription_var, text_in, timestamps_var],
|
| 247 |
+
[diff_out, video_out],
|
| 248 |
+
)
|
| 249 |
|
| 250 |
reset_transcription = gr.Button(
|
| 251 |
+
"Reset to last trascription", elem_id="reset_btn"
|
| 252 |
+
)
|
| 253 |
+
reset_transcription.click(lambda x: x, transcription_var, text_in)
|
| 254 |
with gr.Column():
|
| 255 |
video_out.render()
|
| 256 |
diff_out.render()
|
requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
-
gradio==
|
| 4 |
datasets
|
| 5 |
librosa
|
| 6 |
ffmpeg-python
|
| 7 |
python-dotenv
|
| 8 |
-
aiohttp
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
+
gradio==5.49.1
|
| 4 |
datasets
|
| 5 |
librosa
|
| 6 |
ffmpeg-python
|
| 7 |
python-dotenv
|
| 8 |
+
aiohttp
|
| 9 |
+
spaces
|