Spaces:
Runtime error
Runtime error
fix
Browse files- app.py +120 -30
- requirements.txt +6 -6
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import numpy as np
|
|
| 5 |
from diffusers import StableDiffusionDepth2ImgPipeline
|
| 6 |
from pathlib import Path
|
| 7 |
|
| 8 |
-
device = torch.device(
|
| 9 |
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
| 10 |
"stabilityai/stable-diffusion-2-depth",
|
| 11 |
torch_dtype=torch.float16,
|
|
@@ -13,10 +13,14 @@ dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
|
| 13 |
|
| 14 |
|
| 15 |
def pad_image(input_image):
|
| 16 |
-
pad_w, pad_h =
|
| 17 |
-
np.array(input_image.size) / 64).astype(int)), axis=0)
|
|
|
|
|
|
|
|
|
|
| 18 |
im_padded = Image.fromarray(
|
| 19 |
-
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode=
|
|
|
|
| 20 |
w, h = im_padded.size
|
| 21 |
if w == h:
|
| 22 |
return im_padded
|
|
@@ -30,7 +34,17 @@ def pad_image(input_image):
|
|
| 30 |
return new_image
|
| 31 |
|
| 32 |
|
| 33 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
depth = None
|
| 35 |
if depth_image is not None:
|
| 36 |
depth_image = pad_image(depth_image)
|
|
@@ -56,32 +70,44 @@ def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, see
|
|
| 56 |
guidance_scale=scale,
|
| 57 |
num_images_per_prompt=num_samples,
|
| 58 |
)
|
| 59 |
-
return result[
|
| 60 |
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
with gr.Row():
|
| 65 |
with gr.Column():
|
| 66 |
gr.Markdown("## Stable Diffusion 2 Depth2Img")
|
| 67 |
-
gr.HTML(
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
input_image = gr.Image(type="pil")
|
| 73 |
-
|
|
|
|
| 74 |
prompt = gr.Textbox(label="Prompt")
|
| 75 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
| 76 |
|
| 77 |
run_button = gr.Button("Run")
|
| 78 |
with gr.Accordion("Advanced Options", open=False):
|
| 79 |
num_samples = gr.Slider(
|
| 80 |
-
label="Images", minimum=1, maximum=4, value=1, step=1
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
scale = gr.Slider(
|
| 84 |
-
label="Guidance Scale",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
strength = gr.Slider(
|
| 87 |
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
|
|
@@ -93,26 +119,90 @@ with block:
|
|
| 93 |
step=1,
|
| 94 |
randomize=True,
|
| 95 |
)
|
| 96 |
-
with gr.Column():
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
gr.Examples(
|
| 99 |
examples=[
|
| 100 |
-
[
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
],
|
| 108 |
-
inputs=[input_image, prompt, negative_prompt, steps,
|
| 109 |
-
num_samples, scale, seed, strength, depth_image],
|
| 110 |
outputs=[gallery],
|
| 111 |
fn=predict,
|
| 112 |
cache_examples=True,
|
| 113 |
)
|
| 114 |
-
run_button.click(
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
block.
|
|
|
|
|
|
| 5 |
from diffusers import StableDiffusionDepth2ImgPipeline
|
| 6 |
from pathlib import Path
|
| 7 |
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
| 10 |
"stabilityai/stable-diffusion-2-depth",
|
| 11 |
torch_dtype=torch.float16,
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def pad_image(input_image):
|
| 16 |
+
pad_w, pad_h = (
|
| 17 |
+
np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
|
| 18 |
+
* 64
|
| 19 |
+
- input_image.size
|
| 20 |
+
)
|
| 21 |
im_padded = Image.fromarray(
|
| 22 |
+
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
|
| 23 |
+
)
|
| 24 |
w, h = im_padded.size
|
| 25 |
if w == h:
|
| 26 |
return im_padded
|
|
|
|
| 34 |
return new_image
|
| 35 |
|
| 36 |
|
| 37 |
+
def predict(
|
| 38 |
+
input_image,
|
| 39 |
+
prompt,
|
| 40 |
+
negative_prompt,
|
| 41 |
+
steps,
|
| 42 |
+
num_samples,
|
| 43 |
+
scale,
|
| 44 |
+
seed,
|
| 45 |
+
strength,
|
| 46 |
+
depth_image=None,
|
| 47 |
+
):
|
| 48 |
depth = None
|
| 49 |
if depth_image is not None:
|
| 50 |
depth_image = pad_image(depth_image)
|
|
|
|
| 70 |
guidance_scale=scale,
|
| 71 |
num_images_per_prompt=num_samples,
|
| 72 |
)
|
| 73 |
+
return result["images"]
|
| 74 |
|
| 75 |
|
| 76 |
+
css = """
|
| 77 |
+
#gallery .fixed-height {
|
| 78 |
+
max-height: unset;
|
| 79 |
+
}
|
| 80 |
+
"""
|
| 81 |
+
with gr.Blocks(css=css) as block:
|
| 82 |
with gr.Row():
|
| 83 |
with gr.Column():
|
| 84 |
gr.Markdown("## Stable Diffusion 2 Depth2Img")
|
| 85 |
+
gr.HTML(
|
| 86 |
+
"<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>"
|
| 87 |
+
)
|
| 88 |
|
| 89 |
with gr.Row():
|
| 90 |
with gr.Column():
|
| 91 |
input_image = gr.Image(type="pil")
|
| 92 |
+
with gr.Accordion("Depth Image Optional", open=False):
|
| 93 |
+
depth_image = gr.Image(type="pil")
|
| 94 |
prompt = gr.Textbox(label="Prompt")
|
| 95 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
| 96 |
|
| 97 |
run_button = gr.Button("Run")
|
| 98 |
with gr.Accordion("Advanced Options", open=False):
|
| 99 |
num_samples = gr.Slider(
|
| 100 |
+
label="Images", minimum=1, maximum=4, value=1, step=1
|
| 101 |
+
)
|
| 102 |
+
steps = gr.Slider(
|
| 103 |
+
label="Steps", minimum=1, maximum=50, value=50, step=1
|
| 104 |
+
)
|
| 105 |
scale = gr.Slider(
|
| 106 |
+
label="Guidance Scale",
|
| 107 |
+
minimum=0.1,
|
| 108 |
+
maximum=30.0,
|
| 109 |
+
value=9.0,
|
| 110 |
+
step=0.1,
|
| 111 |
)
|
| 112 |
strength = gr.Slider(
|
| 113 |
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
|
|
|
|
| 119 |
step=1,
|
| 120 |
randomize=True,
|
| 121 |
)
|
| 122 |
+
with gr.Column(scale=2):
|
| 123 |
+
with gr.Row():
|
| 124 |
+
gallery = gr.Gallery(
|
| 125 |
+
label="Generated Images",
|
| 126 |
+
show_label=False,
|
| 127 |
+
elem_id="gallery",
|
| 128 |
+
)
|
| 129 |
gr.Examples(
|
| 130 |
examples=[
|
| 131 |
+
[
|
| 132 |
+
"./examples/baby.jpg",
|
| 133 |
+
"high definition photo of a baby astronaut space walking at the international space station with earth seeing from above in the background",
|
| 134 |
+
"",
|
| 135 |
+
50,
|
| 136 |
+
4,
|
| 137 |
+
9.0,
|
| 138 |
+
123123123,
|
| 139 |
+
0.8,
|
| 140 |
+
None,
|
| 141 |
+
],
|
| 142 |
+
[
|
| 143 |
+
"./examples/gol.jpg",
|
| 144 |
+
"professional photo of a Elmo jumping between two high rises, beautiful colorful city landscape in the background",
|
| 145 |
+
"",
|
| 146 |
+
50,
|
| 147 |
+
4,
|
| 148 |
+
9.0,
|
| 149 |
+
1734133747,
|
| 150 |
+
0.9,
|
| 151 |
+
None,
|
| 152 |
+
],
|
| 153 |
+
[
|
| 154 |
+
"./examples/bag.jpg",
|
| 155 |
+
"a photo of a bag of cookies in the bathroom",
|
| 156 |
+
"low light, dark, blurry",
|
| 157 |
+
50,
|
| 158 |
+
4,
|
| 159 |
+
9.0,
|
| 160 |
+
1734133747,
|
| 161 |
+
0.9,
|
| 162 |
+
"./examples/depth.jpg",
|
| 163 |
+
],
|
| 164 |
+
[
|
| 165 |
+
"./examples/smile_face.jpg",
|
| 166 |
+
"a hand holding a very spherical orange",
|
| 167 |
+
"low light, dark, blurry",
|
| 168 |
+
50,
|
| 169 |
+
4,
|
| 170 |
+
6.0,
|
| 171 |
+
961736534,
|
| 172 |
+
0.5,
|
| 173 |
+
"./examples/smile_depth.jpg",
|
| 174 |
+
],
|
| 175 |
+
],
|
| 176 |
+
inputs=[
|
| 177 |
+
input_image,
|
| 178 |
+
prompt,
|
| 179 |
+
negative_prompt,
|
| 180 |
+
steps,
|
| 181 |
+
num_samples,
|
| 182 |
+
scale,
|
| 183 |
+
seed,
|
| 184 |
+
strength,
|
| 185 |
+
depth_image,
|
| 186 |
],
|
|
|
|
|
|
|
| 187 |
outputs=[gallery],
|
| 188 |
fn=predict,
|
| 189 |
cache_examples=True,
|
| 190 |
)
|
| 191 |
+
run_button.click(
|
| 192 |
+
fn=predict,
|
| 193 |
+
inputs=[
|
| 194 |
+
input_image,
|
| 195 |
+
prompt,
|
| 196 |
+
negative_prompt,
|
| 197 |
+
steps,
|
| 198 |
+
num_samples,
|
| 199 |
+
scale,
|
| 200 |
+
seed,
|
| 201 |
+
strength,
|
| 202 |
+
depth_image,
|
| 203 |
+
],
|
| 204 |
+
outputs=[gallery],
|
| 205 |
+
)
|
| 206 |
|
| 207 |
+
block.queue(api_open=False)
|
| 208 |
+
block.launch(show_api=False)
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
| 1 |
+
diffusers==0.24.0
|
| 2 |
+
gradio==4.9.1
|
| 3 |
+
numpy==1.26.2
|
| 4 |
+
Pillow==10.1.0
|
| 5 |
+
Pillow==10.1.0
|
| 6 |
+
torch==2.1.2
|