|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
def is_cat(x): |
|
return x[0].isupper() |
|
|
|
learn = load_learner('model.pkl') |
|
|
|
categories = ('Dog','Cat') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return dict(zip(categories, map(float,probs))) |
|
|
|
title = "Pet Breed Classifier" |
|
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." |
|
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" |
|
examples = ['dog.jpeg', 'cat.jpeg', 'dogcat.jpeg'] |
|
interpretation='default' |
|
enable_queue=True |
|
|
|
image = gr.Image(height=192, width=192) |
|
label = gr.Label(num_top_classes=3) |
|
|
|
intf = gr.Interface( |
|
fn=predict, |
|
inputs=image, |
|
outputs=label, |
|
examples=examples, |
|
title=title, |
|
description=description |
|
) |
|
intf.launch() |
|
|
|
|
|
|