Merge branch 'main' of hf.co:spaces/radatia/minimal into main
Browse files- app.py +32 -0
- cat.jpeg +0 -0
- dog.jpeg +0 -0
- dogcat.jpeg +0 -0
- model.pkl +3 -0
- requirements.txt +2 -0
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from fastai.vision.all import *
|
3 |
import skimage
|
4 |
|
|
|
5 |
learn = load_learner('model.pkl')
|
6 |
|
7 |
labels = learn.dls.vocab
|
@@ -10,6 +11,19 @@ def predict(img):
|
|
10 |
pred,pred_idx,probs = learn.predict(img)
|
11 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
title = "Pet Breed Classifier"
|
14 |
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
|
15 |
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
|
@@ -17,4 +31,22 @@ examples = ['siamese.jpg']
|
|
17 |
interpretation='default'
|
18 |
enable_queue=True
|
19 |
|
|
|
20 |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from fastai.vision.all import *
|
3 |
import skimage
|
4 |
|
5 |
+
<<<<<<< HEAD
|
6 |
learn = load_learner('model.pkl')
|
7 |
|
8 |
labels = learn.dls.vocab
|
|
|
11 |
pred,pred_idx,probs = learn.predict(img)
|
12 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
13 |
|
14 |
+
=======
|
15 |
+
def is_cat(x):
|
16 |
+
return x[0].isupper()
|
17 |
+
|
18 |
+
learn = load_learner('model.pkl')
|
19 |
+
|
20 |
+
labels = learn.dls.vocab
|
21 |
+
def predict(img):
|
22 |
+
img = PILImage.create(img)
|
23 |
+
pred,pred_idx,probs = learn.predict(img)
|
24 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
25 |
+
|
26 |
+
>>>>>>> d26be9f828be2719f155927ee31381a78ee309a2
|
27 |
title = "Pet Breed Classifier"
|
28 |
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
|
29 |
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
|
|
|
31 |
interpretation='default'
|
32 |
enable_queue=True
|
33 |
|
34 |
+
<<<<<<< HEAD
|
35 |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
36 |
+
=======
|
37 |
+
image = gr.Image(height=192, width=192)
|
38 |
+
label = gr.Label(num_top_classes=3)
|
39 |
+
examples = ['dog.jpeg', 'cat.jpeg', 'dogcat.jpeg']
|
40 |
+
|
41 |
+
intf = gr.Interface(
|
42 |
+
fn=predict,
|
43 |
+
inputs=image,
|
44 |
+
outputs=label,
|
45 |
+
examples=examples,
|
46 |
+
title='Cat or Dog Classifier',
|
47 |
+
description='This is a cat or dog classifier. Upload an image of a cat or dog and it will predict which it is.'
|
48 |
+
)
|
49 |
+
intf.launch()
|
50 |
+
|
51 |
+
# gr.Interface(fn=predict,inputs=gr.components.Image(height=512, width=512),outputs=gr.components.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|
52 |
+
>>>>>>> d26be9f828be2719f155927ee31381a78ee309a2
|
cat.jpeg
ADDED
![]() |
dog.jpeg
ADDED
![]() |
dogcat.jpeg
ADDED
![]() |
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7375d58771959f253b5fcce261d2116525f917cd9543dfb81ef31f79877818e7
|
3 |
+
size 47064894
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
scikit-image
|