File size: 942 Bytes
d78bec8
f703f2c
 
 
 
7d6f63f
4dc7d59
326e30b
7d6f63f
326e30b
 
7d6f63f
 
7553383
 
d78bec8
7d6f63f
 
 
 
 
f703f2c
4c20b36
 
7d6f63f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from fastai.vision.all import *
import gradio as gr


#is_black(x) : return x[0].isupper()

def input_img(img):
    learn=load_learner('model.pkl')
    race,_,probs = learn.predict(PILImage.create(img))
    print(f"This is a: {race}.")
    print(f"Probability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
categories=('Black people','White people')
def func_classi(img):
    pred,idx,probs=learn.predict(img)
    return dict(zip(categories,map(float,probs)))

image=gr.inputs.Image(shape=(192,192))
label=gr.outputs.Label()
examples=('Black people','White people')
demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
demo.launch(inline=False)

#image=gr.inputs.Image(shape=(192,192))
#label=gr.outputs.Label()
#examples=('Black people','White people')
#demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")])
#demo.launch(inline=False)