Spaces:
Runtime error
Runtime error
File size: 1,076 Bytes
d78bec8 f703f2c 7d6f63f 4dc7d59 326e30b 7d6f63f 7ec9149 7d6f63f 7553383 d78bec8 7d6f63f 7ec9149 7d6f63f f703f2c 4c20b36 7d6f63f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from fastai.vision.all import *
import gradio as gr
#is_black(x) : return x[0].isupper()
def input_img(img):
learn=load_learner('model.pkl')
race,_,probs = learn.predict(PILImage.create(img))
#print(f"This is a: {race}.")
processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
return processed_output
categories=('Black people','White people')
def func_classi(img):
pred,idx,probs=learn.predict(img)
return dict(zip(categories,map(float,probs)))
image=gr.inputs.Image(shape=(192,192))
label=gr.outputs.Label()
examples=('Black people','White people')
demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
#demo = gr.Interface(fn=input_img, inputs="image", outputs="label")
demo.launch(inline=False)
#image=gr.inputs.Image(shape=(192,192))
#label=gr.outputs.Label()
#examples=('Black people','White people')
#demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")])
#demo.launch(inline=False)
|