rafaym's picture
app.py
717336b
raw
history blame
380 Bytes
categories=('white people','black people')
def func_classi(img):
pred,idx,probs=learn.predict(img)
return dict(zip(categories,map(float,probs)))
import gradio as gr
image=gr.inputs.Image(shape=(192,192))
label=gr.outputs.Label()
examples=('white people','black people')
demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
demo.launch(inline=False,share=True)