Spaces:
Runtime error
Runtime error
# from fastai.vision.all import * | |
# import gradio as gr | |
# #is_black(x) : return x[0].isupper() | |
# def input_img(img): | |
# learn=load_learner('model.pkl') | |
# race,_,probs = learn.predict(img) | |
# #print(f"This is a: {race}.") | |
# processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") | |
# return processed_output | |
# # categories=('Black people','White people') | |
# # def func_classi(img): | |
# # pred,idx,probs=learn.predict(img) | |
# # return dict(zip(categories,map(float,probs))) | |
# image=gr.inputs.Image(shape=(192,192)) | |
# label=gr.outputs.Label() | |
# examples=('Black people','White people') | |
# #demo = gr.Interface(fn=func_classi, inputs="image", outputs="label") | |
# demo = gr.Interface(fn=input_img, inputs="image", outputs="label") | |
# demo.launch(inline=False) | |
# #image=gr.inputs.Image(shape=(192,192)) | |
# #label=gr.outputs.Label() | |
# #examples=('Black people','White people') | |
# #demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")]) | |
# #demo.launch(inline=False) | |
from fastai.vision.all import * | |
learn=load_learner('model.pkl') | |
def input_img(img): | |
race,_,probs = learn.predict(PILImage.create('img')) | |
#race,_,probs = learn.predict(PILImage.create(img)) | |
#processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") | |
processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") | |
return processed_output | |
im=PILImage.create(img) | |
im=PILImage.create('img') | |
im.thumbnail((192,192)) | |
learn.predict(im) | |
categories=('Black people','White people') | |
def func_classi(img): | |
pred,idx,probs=learn.predict(img) | |
return dict(zip(categories,map(float,probs))) | |
func_classi(im) | |
import gradio as gr | |
image=gr.inputs.Image(shape=(192,192)) | |
label=gr.outputs.Label() | |
examples=('Black people','White people') | |
demo = gr.Interface(fn=func_classi, inputs="image", outputs="label") | |
demo.launch(inline=False) |