Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,14 @@
|
|
1 |
-
# from fastai.vision.all import *
|
2 |
-
# import gradio as gr
|
3 |
-
|
4 |
-
|
5 |
-
# #is_black(x) : return x[0].isupper()
|
6 |
-
|
7 |
-
# def input_img(img):
|
8 |
-
# learn=load_learner('model.pkl')
|
9 |
-
# race,_,probs = learn.predict(img)
|
10 |
-
# #print(f"This is a: {race}.")
|
11 |
-
# processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
|
12 |
-
# return processed_output
|
13 |
-
|
14 |
-
# # categories=('Black people','White people')
|
15 |
-
# # def func_classi(img):
|
16 |
-
# # pred,idx,probs=learn.predict(img)
|
17 |
-
# # return dict(zip(categories,map(float,probs)))
|
18 |
-
|
19 |
-
# image=gr.inputs.Image(shape=(192,192))
|
20 |
-
# label=gr.outputs.Label()
|
21 |
-
# examples=('Black people','White people')
|
22 |
-
# #demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
|
23 |
-
# demo = gr.Interface(fn=input_img, inputs="image", outputs="label")
|
24 |
-
# demo.launch(inline=False)
|
25 |
-
|
26 |
-
# #image=gr.inputs.Image(shape=(192,192))
|
27 |
-
# #label=gr.outputs.Label()
|
28 |
-
# #examples=('Black people','White people')
|
29 |
-
# #demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")])
|
30 |
-
# #demo.launch(inline=False)
|
31 |
-
|
32 |
from fastai.vision.all import *
|
33 |
learn=load_learner('model.pkl')
|
34 |
def input_img(img):
|
35 |
race,_,probs = learn.predict(PILImage.create('img'))
|
36 |
-
#race,_,probs = learn.predict(PILImage.create(img))
|
37 |
-
#processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
|
38 |
processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
|
39 |
return processed_output
|
40 |
|
41 |
-
#im=PILImage.create(img)
|
42 |
-
# im=PILImage.create('img')
|
43 |
-
# im.thumbnail((192,192))
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#learn.predict(im)
|
48 |
-
|
49 |
categories=('Black people','White people')
|
50 |
def func_classi(img):
|
51 |
pred,idx,probs=learn.predict(img)
|
52 |
return dict(zip(categories,map(float,probs)))
|
53 |
-
|
54 |
-
#func_classi(im)
|
55 |
import gradio as gr
|
56 |
image=gr.inputs.Image(shape=(192,192))
|
57 |
label=gr.outputs.Label()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastai.vision.all import *
|
2 |
learn=load_learner('model.pkl')
|
3 |
def input_img(img):
|
4 |
race,_,probs = learn.predict(PILImage.create('img'))
|
|
|
|
|
5 |
processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
|
6 |
return processed_output
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
categories=('Black people','White people')
|
9 |
def func_classi(img):
|
10 |
pred,idx,probs=learn.predict(img)
|
11 |
return dict(zip(categories,map(float,probs)))
|
|
|
|
|
12 |
import gradio as gr
|
13 |
image=gr.inputs.Image(shape=(192,192))
|
14 |
label=gr.outputs.Label()
|