rafaym commited on
Commit
60959dc
·
1 Parent(s): a797a1c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -20
app.py CHANGED
@@ -1,30 +1,60 @@
1
- from fastai.vision.all import *
2
- import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
4
 
5
- #is_black(x) : return x[0].isupper()
6
 
7
  def input_img(img):
8
- learn=load_learner('model.pkl')
9
- race,_,probs = learn.predict(img)
10
- #print(f"This is a: {race}.")
11
  processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
12
  return processed_output
13
-
14
- # categories=('Black people','White people')
15
- # def func_classi(img):
16
- # pred,idx,probs=learn.predict(img)
17
- # return dict(zip(categories,map(float,probs)))
 
 
18
 
 
 
 
 
 
 
 
 
 
19
  image=gr.inputs.Image(shape=(192,192))
20
  label=gr.outputs.Label()
21
  examples=('Black people','White people')
22
- #demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
23
- demo = gr.Interface(fn=input_img, inputs="image", outputs="label")
24
- demo.launch(inline=False)
25
-
26
- #image=gr.inputs.Image(shape=(192,192))
27
- #label=gr.outputs.Label()
28
- #examples=('Black people','White people')
29
- #demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")])
30
- #demo.launch(inline=False)
 
1
+ # from fastai.vision.all import *
2
+ # import gradio as gr
3
+
4
+
5
+ # #is_black(x) : return x[0].isupper()
6
+
7
+ # def input_img(img):
8
+ # learn=load_learner('model.pkl')
9
+ # race,_,probs = learn.predict(img)
10
+ # #print(f"This is a: {race}.")
11
+ # processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
12
+ # return processed_output
13
+
14
+ # # categories=('Black people','White people')
15
+ # # def func_classi(img):
16
+ # # pred,idx,probs=learn.predict(img)
17
+ # # return dict(zip(categories,map(float,probs)))
18
+
19
+ # image=gr.inputs.Image(shape=(192,192))
20
+ # label=gr.outputs.Label()
21
+ # examples=('Black people','White people')
22
+ # #demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
23
+ # demo = gr.Interface(fn=input_img, inputs="image", outputs="label")
24
+ # demo.launch(inline=False)
25
 
26
+ # #image=gr.inputs.Image(shape=(192,192))
27
+ # #label=gr.outputs.Label()
28
+ # #examples=('Black people','White people')
29
+ # #demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")])
30
+ # #demo.launch(inline=False)
31
 
 
32
 
33
  def input_img(img):
34
+ race,_,probs = learn.predict(PILImage.create('img'))
35
+ #race,_,probs = learn.predict(PILImage.create(img))
36
+ #processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
37
  processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}")
38
  return processed_output
39
+ learn.export('model.pkl')
40
+
41
+ im=PILImage.create(img)
42
+ im=PILImage.create('img')
43
+ im.thumbnail((192,192))
44
+
45
+ learn=load_learner('model.pkl')
46
 
47
+ learn.predict(im)
48
+
49
+ categories=('Black people','White people')
50
+ def func_classi(img):
51
+ pred,idx,probs=learn.predict(img)
52
+ return dict(zip(categories,map(float,probs)))
53
+
54
+ func_classi(im)
55
+ import gradio as gr
56
  image=gr.inputs.Image(shape=(192,192))
57
  label=gr.outputs.Label()
58
  examples=('Black people','White people')
59
+ demo = gr.Interface(fn=func_classi, inputs="image", outputs="label")
60
+ demo.launch(inline=False)