from fastai.vision.all import * import gradio as gr #is_black(x) : return x[0].isupper() def input_img(img): learn=load_learner('model.pkl') race,_,probs = learn.predict(img) #print(f"This is a: {race}.") processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") return processed_output # categories=('Black people','White people') # def func_classi(img): # pred,idx,probs=learn.predict(img) # return dict(zip(categories,map(float,probs))) image=gr.inputs.Image(shape=(192,192)) label=gr.outputs.Label() examples=('Black people','White people') #demo = gr.Interface(fn=func_classi, inputs="image", outputs="label") demo = gr.Interface(fn=input_img, inputs="image", outputs="label") demo.launch(inline=False) #image=gr.inputs.Image(shape=(192,192)) #label=gr.outputs.Label() #examples=('Black people','White people') #demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")]) #demo.launch(inline=False)