# from fastai.vision.all import * # import gradio as gr # #is_black(x) : return x[0].isupper() # def input_img(img): # learn=load_learner('model.pkl') # race,_,probs = learn.predict(img) # #print(f"This is a: {race}.") # processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") # return processed_output # # categories=('Black people','White people') # # def func_classi(img): # # pred,idx,probs=learn.predict(img) # # return dict(zip(categories,map(float,probs))) # image=gr.inputs.Image(shape=(192,192)) # label=gr.outputs.Label() # examples=('Black people','White people') # #demo = gr.Interface(fn=func_classi, inputs="image", outputs="label") # demo = gr.Interface(fn=input_img, inputs="image", outputs="label") # demo.launch(inline=False) # #image=gr.inputs.Image(shape=(192,192)) # #label=gr.outputs.Label() # #examples=('Black people','White people') # #demo = gr.Interface(fn=func_classi, inputs=[gr.func_classi()], outputs=[gr.Textbook(label="Results")]) # #demo.launch(inline=False) from fastai.vision.all import * learn=load_learner('model.pkl') def input_img(img): race,_,probs = learn.predict(PILImage.create('img')) #race,_,probs = learn.predict(PILImage.create(img)) #processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") return processed_output #im=PILImage.create(img) # im=PILImage.create('img') # im.thumbnail((192,192)) #learn.predict(im) categories=('Black people','White people') def func_classi(img): pred,idx,probs=learn.predict(img) return dict(zip(categories,map(float,probs))) #func_classi(im) import gradio as gr image=gr.inputs.Image(shape=(192,192)) label=gr.outputs.Label() examples=('Black people','White people') demo = gr.Interface(fn=func_classi, inputs="image", outputs="label") demo.launch(inline=False)