from fastai.vision.all import * import gradio as gr learn=load_learner('model.pkl') is_black,_,probs = learn.predict(PILImage.create('black people.jpg')) print(f"This is a: {is_black}.") processed_output = print(f"Probability it's a black person: {probs[0]:.4f}") return processed_output #is_black(x) : return x[0].isupper() categories=('white people','black people') def func_classi(img): pred,idx,probs=learn.predict(img) return dict(zip(categories,map(float,probs))) image=gr.inputs.Image(shape=(192,192)) label=gr.outputs.Label() examples=('white people','black people') demo = gr.Interface(fn=func_classi, inputs="image", outputs="label") demo.launch(inline=False)