from fastai.vision.all import * learn=load_learner('model.pkl') def input_img(img): race,_,probs = learn.predict(PILImage.create('img')) processed_output=(f"This is a: {race}./nProbability it's a black person: {probs[0]:.4f}.\nProbability it's a white person: {probs[1]:.4f}") return processed_output categories=('Black people','White people') def func_classi(img): pred,idx,probs=learn.predict(img) return dict(zip(categories,map(float,probs))) import gradio as gr examples=('Black people','White people') demo = gr.Interface(fn=func_classi, inputs=[gr.Webcam()], outputs=[gr.Label(label="Results")]) demo.launch(inline=False)