import cv2 import numpy as np import mediapipe as mp import torch from flask import Flask, request, jsonify import torch.nn.functional as F app = Flask(__name__) mp_pose = mp.solutions.pose mp_holistic = mp.solutions.holistic pose = mp_pose.Pose(model_complexity=2) # Improved accuracy holistic = mp_holistic.Holistic() # For refining pose KNOWN_OBJECT_WIDTH_CM = 21.0 # A4 paper width in cm FOCAL_LENGTH = 600 # Default focal length DEFAULT_HEIGHT_CM = 152.0 # Default height if not provided # Load depth estimation model def load_depth_model(): model = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") model.eval() return model depth_model = load_depth_model() def calibrate_focal_length(image, real_width_cm, detected_width_px): """Dynamically calibrates focal length using a known object.""" return (detected_width_px * FOCAL_LENGTH) / real_width_cm if detected_width_px else FOCAL_LENGTH def detect_reference_object(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray, 50, 150) contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: largest_contour = max(contours, key=cv2.contourArea) x, y, w, h = cv2.boundingRect(largest_contour) focal_length = calibrate_focal_length(image, KNOWN_OBJECT_WIDTH_CM, w) scale_factor = KNOWN_OBJECT_WIDTH_CM / w return scale_factor, focal_length return 0.05, FOCAL_LENGTH def estimate_depth(image): """Uses AI-based depth estimation to improve circumference calculations.""" input_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 input_tensor = torch.tensor(input_image, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) # Resize input to match MiDaS model input size input_tensor = F.interpolate(input_tensor, size=(384, 384), mode="bilinear", align_corners=False) with torch.no_grad(): depth_map = depth_model(input_tensor) return depth_map.squeeze().numpy() def calculate_distance_using_height(landmarks, image_height, user_height_cm): """Calculate distance using the user's known height.""" top_head = landmarks[mp_pose.PoseLandmark.NOSE.value].y * image_height bottom_foot = max( landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y, landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].y ) * image_height person_height_px = abs(bottom_foot - top_head) # Using the formula: distance = (actual_height_cm * focal_length) / height_in_pixels distance = (user_height_cm * FOCAL_LENGTH) / person_height_px # Calculate more accurate scale_factor based on known height scale_factor = user_height_cm / person_height_px return distance, scale_factor def get_body_width_at_height(frame, height_px, center_x): """Scan horizontally at a specific height to find body edges.""" # Convert to grayscale and apply threshold gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (5, 5), 0) _, thresh = cv2.threshold(blur, 50, 255, cv2.THRESH_BINARY) # Ensure height_px is within image bounds if height_px >= frame.shape[0]: height_px = frame.shape[0] - 1 # Get horizontal line at the specified height horizontal_line = thresh[height_px, :] # Find left and right edges starting from center center_x = int(center_x * frame.shape[1]) left_edge, right_edge = center_x, center_x # Scan from center to left for i in range(center_x, 0, -1): if horizontal_line[i] == 0: # Found edge (black pixel) left_edge = i break # Scan from center to right for i in range(center_x, len(horizontal_line)): if horizontal_line[i] == 0: # Found edge (black pixel) right_edge = i break width_px = right_edge - left_edge # If width is unreasonably small, apply a minimum width min_width = 0.1 * frame.shape[1] # Minimum width as 10% of image width if width_px < min_width: width_px = min_width return width_px def calculate_measurements(results, scale_factor, image_width, image_height, depth_map, frame=None, user_height_cm=None): landmarks = results.pose_landmarks.landmark # If user's height is provided, use it to get a more accurate scale factor if user_height_cm: _, scale_factor = calculate_distance_using_height(landmarks, image_height, user_height_cm) def pixel_to_cm(value): return round(value * scale_factor, 2) def calculate_circumference(width_px, depth_ratio=1.0): """Estimate circumference using width and depth adjustment.""" # Using a simplified elliptical approximation: C ≈ 2π * sqrt((a² + b²)/2) # where a is half the width and b is estimated depth width_cm = width_px * scale_factor estimated_depth_cm = width_cm * depth_ratio * 0.7 # Depth is typically ~70% of width for torso half_width = width_cm / 2 half_depth = estimated_depth_cm / 2 return round(2 * np.pi * np.sqrt((half_width**2 + half_depth**2) / 2), 2) measurements = {} # Shoulder Width left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value] right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value] shoulder_width_px = abs(left_shoulder.x * image_width - right_shoulder.x * image_width) # Apply a slight correction factor for shoulders (they're usually detected well) shoulder_correction = 1.1 # 10% wider shoulder_width_px *= shoulder_correction measurements["shoulder_width"] = pixel_to_cm(shoulder_width_px) # Chest/Bust Measurement chest_y_ratio = 0.15 # Approximately 15% down from shoulder to hip chest_y = left_shoulder.y + (landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y - left_shoulder.y) * chest_y_ratio chest_correction = 1.15 # 15% wider than detected width chest_width_px = abs((right_shoulder.x - left_shoulder.x) * image_width) * chest_correction if frame is not None: chest_y_px = int(chest_y * image_height) center_x = (left_shoulder.x + right_shoulder.x) / 2 detected_width = get_body_width_at_height(frame, chest_y_px, center_x) if detected_width > 0: chest_width_px = max(chest_width_px, detected_width) chest_depth_ratio = 1.0 if depth_map is not None: chest_x = int(((left_shoulder.x + right_shoulder.x) / 2) * image_width) chest_y_px = int(chest_y * image_height) scale_y = 384 / image_height scale_x = 384 / image_width chest_y_scaled = int(chest_y_px * scale_y) chest_x_scaled = int(chest_x * scale_x) if 0 <= chest_y_scaled < 384 and 0 <= chest_x_scaled < 384: chest_depth = depth_map[chest_y_scaled, chest_x_scaled] max_depth = np.max(depth_map) chest_depth_ratio = 1.0 + 0.5 * (1.0 - chest_depth / max_depth) measurements["chest_width"] = pixel_to_cm(chest_width_px) measurements["chest_circumference"] = calculate_circumference(chest_width_px, chest_depth_ratio) # Waist Measurement left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value] right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value] # Adjust waist_y_ratio to better reflect the natural waistline waist_y_ratio = 0.35 # 35% down from shoulder to hip (higher than before) waist_y = left_shoulder.y + (left_hip.y - left_shoulder.y) * waist_y_ratio # Use contour detection to dynamically estimate waist width if frame is not None: waist_y_px = int(waist_y * image_height) center_x = (left_hip.x + right_hip.x) / 2 detected_width = get_body_width_at_height(frame, waist_y_px, center_x) if detected_width > 0: waist_width_px = detected_width else: # Fallback to hip width if contour detection fails waist_width_px = abs(right_hip.x - left_hip.x) * image_width * 0.9 # 90% of hip width else: # Fallback to hip width if no frame is provided waist_width_px = abs(right_hip.x - left_hip.x) * image_width * 0.9 # 90% of hip width # Apply 30% correction factor to waist width waist_correction = 1.16 # 30% wider waist_width_px *= waist_correction # Get depth adjustment for waist if available waist_depth_ratio = 1.0 if depth_map is not None: waist_x = int(((left_hip.x + right_hip.x) / 2) * image_width) waist_y_px = int(waist_y * image_height) scale_y = 384 / image_height scale_x = 384 / image_width waist_y_scaled = int(waist_y_px * scale_y) waist_x_scaled = int(waist_x * scale_x) if 0 <= waist_y_scaled < 384 and 0 <= waist_x_scaled < 384: waist_depth = depth_map[waist_y_scaled, waist_x_scaled] max_depth = np.max(depth_map) waist_depth_ratio = 1.0 + 0.5 * (1.0 - waist_depth / max_depth) measurements["waist_width"] = pixel_to_cm(waist_width_px) measurements["waist"] = calculate_circumference(waist_width_px, waist_depth_ratio) # Hip Measurement hip_correction = 1.35 # Hips are typically 35% wider than detected landmarks hip_width_px = abs(left_hip.x * image_width - right_hip.x * image_width) * hip_correction if frame is not None: hip_y_offset = 0.1 # 10% down from hip landmarks hip_y = left_hip.y + (landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y - left_hip.y) * hip_y_offset hip_y_px = int(hip_y * image_height) center_x = (left_hip.x + right_hip.x) / 2 detected_width = get_body_width_at_height(frame, hip_y_px, center_x) if detected_width > 0: hip_width_px = max(hip_width_px, detected_width) hip_depth_ratio = 1.0 if depth_map is not None: hip_x = int(((left_hip.x + right_hip.x) / 2) * image_width) hip_y_px = int(left_hip.y * image_height) hip_y_scaled = int(hip_y_px * scale_y) hip_x_scaled = int(hip_x * scale_x) if 0 <= hip_y_scaled < 384 and 0 <= hip_x_scaled < 384: hip_depth = depth_map[hip_y_scaled, hip_x_scaled] max_depth = np.max(depth_map) hip_depth_ratio = 1.0 + 0.5 * (1.0 - hip_depth / max_depth) measurements["hip_width"] = pixel_to_cm(hip_width_px) measurements["hip"] = calculate_circumference(hip_width_px, hip_depth_ratio) # Other measurements (unchanged) neck = landmarks[mp_pose.PoseLandmark.NOSE.value] left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value] neck_width_px = abs(neck.x * image_width - left_ear.x * image_width) * 2.0 measurements["neck"] = calculate_circumference(neck_width_px, 1.0) measurements["neck_width"] = pixel_to_cm(neck_width_px) left_wrist = landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value] sleeve_length_px = abs(left_shoulder.y * image_height - left_wrist.y * image_height) measurements["arm_length"] = pixel_to_cm(sleeve_length_px) shirt_length_px = abs(left_shoulder.y * image_height - left_hip.y * image_height) * 1.2 measurements["shirt_length"] = pixel_to_cm(shirt_length_px) # Thigh Circumference (improved with depth information) thigh_y_ratio = 0.2 # 20% down from hip to knee left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value] thigh_y = left_hip.y + (left_knee.y - left_hip.y) * thigh_y_ratio # Apply correction factor for thigh width thigh_correction = 1.2 # Thighs are typically wider than what can be estimated from front view thigh_width_px = hip_width_px * 0.5 * thigh_correction # Base thigh width on hip width # Use contour detection if frame is available if frame is not None: thigh_y_px = int(thigh_y * image_height) thigh_x = left_hip.x * 0.9 # Move slightly inward from hip detected_width = get_body_width_at_height(frame, thigh_y_px, thigh_x) if detected_width > 0 and detected_width < hip_width_px: # Sanity check thigh_width_px = detected_width # Use detected width # If depth map is available, use it for thigh measurement thigh_depth_ratio = 1.0 if depth_map is not None: thigh_x = int(left_hip.x * image_width) thigh_y_px = int(thigh_y * image_height) # Scale coordinates to match depth map size thigh_y_scaled = int(thigh_y_px * scale_y) thigh_x_scaled = int(thigh_x * scale_x) if 0 <= thigh_y_scaled < 384 and 0 <= thigh_x_scaled < 384: thigh_depth = depth_map[thigh_y_scaled, thigh_x_scaled] max_depth = np.max(depth_map) thigh_depth_ratio = 1.0 + 0.5 * (1.0 - thigh_depth / max_depth) measurements["thigh"] = pixel_to_cm(thigh_width_px) measurements["thigh_circumference"] = calculate_circumference(thigh_width_px, thigh_depth_ratio) left_ankle = landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value] trouser_length_px = abs(left_hip.y * image_height - left_ankle.y * image_height) measurements["trouser_length"] = pixel_to_cm(trouser_length_px) return measurements @app.route("/upload_images", methods=["POST"]) def upload_images(): if "front" not in request.files: return jsonify({"error": "Missing front image for reference."}), 400 # Get user height if provided, otherwise use default user_height_cm = request.form.get('height_cm') print(user_height_cm) if user_height_cm: try: user_height_cm = float(user_height_cm) except ValueError: user_height_cm = DEFAULT_HEIGHT_CM else: user_height_cm = DEFAULT_HEIGHT_CM received_images = {pose_name: request.files[pose_name] for pose_name in ["front", "left_side", "right_side", "back"] if pose_name in request.files} measurements, scale_factor, focal_length, results = {}, None, FOCAL_LENGTH, {} frames = {} for pose_name, image_file in received_images.items(): image_np = np.frombuffer(image_file.read(), np.uint8) frame = cv2.imdecode(image_np, cv2.IMREAD_COLOR) frames[pose_name] = frame # Store the frame for contour detection rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results[pose_name] = holistic.process(rgb_frame) image_height, image_width, _ = frame.shape if pose_name == "front": # Always use height for calibration (default or provided) if results[pose_name].pose_landmarks: _, scale_factor = calculate_distance_using_height( results[pose_name].pose_landmarks.landmark, image_height, user_height_cm ) else: # Fallback to object detection only if pose landmarks aren't detected scale_factor, focal_length = detect_reference_object(frame) depth_map = estimate_depth(frame) if pose_name in ["front", "left_side"] else None if results[pose_name].pose_landmarks: if pose_name == "front": measurements.update(calculate_measurements( results[pose_name], scale_factor, image_width, image_height, depth_map, frames[pose_name], # Pass the frame for contour detection user_height_cm )) # Debug information to help troubleshoot measurements debug_info = { "scale_factor": float(scale_factor) if scale_factor else None, "focal_length": float(focal_length), "user_height_cm": float(user_height_cm) } return jsonify({ "measurements": measurements, "debug_info": debug_info }) if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)