Spaces:
Build error
Build error
Upload 3 files
Browse files- app.py +184 -4
- install.sh +2 -0
- requirements.txt +7 -0
app.py
CHANGED
|
@@ -1,4 +1,184 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask
|
| 2 |
+
from flask_restx import Api, Resource, fields
|
| 3 |
+
from werkzeug.datastructures import FileStorage
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 8 |
+
from sklearn.compose import ColumnTransformer
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
from sklearn.impute import SimpleImputer
|
| 11 |
+
from sklearn.linear_model import LinearRegression
|
| 12 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
| 13 |
+
import joblib
|
| 14 |
+
import streamlit as st
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import requests
|
| 17 |
+
import threading
|
| 18 |
+
import json
|
| 19 |
+
|
| 20 |
+
app = Flask(__name__)
|
| 21 |
+
api = Api(app, version='1.0', title='Car Depreciation Model API',
|
| 22 |
+
description='API for creating and testing car depreciation models')
|
| 23 |
+
|
| 24 |
+
model_ns = api.namespace('model', description='Model operations')
|
| 25 |
+
predict_ns = api.namespace('predict', description='Prediction operations')
|
| 26 |
+
|
| 27 |
+
# Define the expected input for file upload
|
| 28 |
+
upload_parser = api.parser()
|
| 29 |
+
upload_parser.add_argument('file', location='files', type=FileStorage, required=True)
|
| 30 |
+
|
| 31 |
+
# Define the expected input for prediction
|
| 32 |
+
input_model = api.model('PredictionInput', {
|
| 33 |
+
'Car_Model': fields.String(required=True, description='Car model'),
|
| 34 |
+
'Car_Year': fields.Integer(required=True, description='Year of the car'),
|
| 35 |
+
'Assessment_Year': fields.Integer(required=True, description='Assessment year'),
|
| 36 |
+
'Starting_Asset_Value': fields.Float(required=True, description='Starting asset value'),
|
| 37 |
+
'Book_Residual_Value': fields.Float(required=True, description='Book residual value'),
|
| 38 |
+
'Market_Value': fields.Float(required=True, description='Market value')
|
| 39 |
+
})
|
| 40 |
+
|
| 41 |
+
# Global variable to store the model
|
| 42 |
+
global_model = None
|
| 43 |
+
|
| 44 |
+
@model_ns.route('/create')
|
| 45 |
+
@api.expect(upload_parser)
|
| 46 |
+
class ModelCreation(Resource):
|
| 47 |
+
@api.doc(description='Create a new model from CSV data')
|
| 48 |
+
@api.response(200, 'Model created successfully')
|
| 49 |
+
@api.response(400, 'Invalid input')
|
| 50 |
+
def post(self):
|
| 51 |
+
global global_model
|
| 52 |
+
args = upload_parser.parse_args()
|
| 53 |
+
uploaded_file = args['file']
|
| 54 |
+
|
| 55 |
+
if uploaded_file and uploaded_file.filename.endswith('.csv'):
|
| 56 |
+
# Read the CSV file
|
| 57 |
+
data = pd.read_csv(uploaded_file)
|
| 58 |
+
|
| 59 |
+
# Prepare features and target
|
| 60 |
+
X = data.drop('Depreciation_Percent', axis=1)
|
| 61 |
+
y = data['Depreciation_Percent']
|
| 62 |
+
|
| 63 |
+
# Split the data into training and testing sets
|
| 64 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 65 |
+
|
| 66 |
+
# Create preprocessing steps
|
| 67 |
+
numeric_features = ['Car_Year', 'Assessment_Year', 'Starting_Asset_Value', 'Book_Residual_Value', 'Market_Value']
|
| 68 |
+
categorical_features = ['Car_Model']
|
| 69 |
+
|
| 70 |
+
numeric_transformer = SimpleImputer(strategy='median')
|
| 71 |
+
categorical_transformer = Pipeline(steps=[
|
| 72 |
+
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
|
| 73 |
+
('onehot', OneHotEncoder(handle_unknown='ignore'))
|
| 74 |
+
])
|
| 75 |
+
|
| 76 |
+
preprocessor = ColumnTransformer(
|
| 77 |
+
transformers=[
|
| 78 |
+
('num', numeric_transformer, numeric_features),
|
| 79 |
+
('cat', categorical_transformer, categorical_features)
|
| 80 |
+
])
|
| 81 |
+
|
| 82 |
+
# Create a pipeline with preprocessor and model
|
| 83 |
+
model = Pipeline(steps=[('preprocessor', preprocessor),
|
| 84 |
+
('regressor', LinearRegression())])
|
| 85 |
+
|
| 86 |
+
# Fit the model
|
| 87 |
+
model.fit(X_train, y_train)
|
| 88 |
+
|
| 89 |
+
# Make predictions on the test set
|
| 90 |
+
y_pred = model.predict(X_test)
|
| 91 |
+
|
| 92 |
+
# Evaluate the model
|
| 93 |
+
mse = mean_squared_error(y_test, y_pred)
|
| 94 |
+
r2 = r2_score(y_test, y_pred)
|
| 95 |
+
|
| 96 |
+
# Save the model
|
| 97 |
+
joblib.dump(model, 'output/car_depreciation_model.joblib')
|
| 98 |
+
global_model = model
|
| 99 |
+
|
| 100 |
+
return {
|
| 101 |
+
'message': 'Model created and saved successfully',
|
| 102 |
+
'mse': float(mse),
|
| 103 |
+
'r2': float(r2)
|
| 104 |
+
}, 200
|
| 105 |
+
|
| 106 |
+
return {'error': 'Invalid file format'}, 400
|
| 107 |
+
|
| 108 |
+
@predict_ns.route('/')
|
| 109 |
+
class Prediction(Resource):
|
| 110 |
+
@api.expect(input_model)
|
| 111 |
+
@api.doc(description='Predict car depreciation')
|
| 112 |
+
@api.response(200, 'Successful prediction')
|
| 113 |
+
@api.response(400, 'Invalid input')
|
| 114 |
+
@api.response(404, 'Model not found')
|
| 115 |
+
def post(self):
|
| 116 |
+
global global_model
|
| 117 |
+
try:
|
| 118 |
+
if global_model is None:
|
| 119 |
+
try:
|
| 120 |
+
global_model = joblib.load('output/car_depreciation_model.joblib')
|
| 121 |
+
except FileNotFoundError:
|
| 122 |
+
return {'error': 'Model not found. Please create a model first.'}, 404
|
| 123 |
+
|
| 124 |
+
# Get JSON data from the request
|
| 125 |
+
data = api.payload
|
| 126 |
+
|
| 127 |
+
# Convert JSON to DataFrame
|
| 128 |
+
new_data_df = pd.DataFrame([data])
|
| 129 |
+
|
| 130 |
+
# Make prediction
|
| 131 |
+
prediction = global_model.predict(new_data_df)
|
| 132 |
+
|
| 133 |
+
return {
|
| 134 |
+
'predicted_depreciation': float(prediction[0])
|
| 135 |
+
}, 200
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
return {'error': str(e)}, 400
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
API_URL = "http://localhost:5000"
|
| 142 |
+
st.title('Car Depreciation Predictor')
|
| 143 |
+
|
| 144 |
+
# Input form for prediction
|
| 145 |
+
st.header('Predict Depreciation')
|
| 146 |
+
car_model = st.text_input('Car Model',value="Honda Civic")
|
| 147 |
+
car_year = st.number_input('Car Year', value=2022)
|
| 148 |
+
assessment_year = st.number_input('Assessment Year', min_value=1, max_value=5, value=1)
|
| 149 |
+
starting_asset_value = st.number_input('Starting Asset Value', min_value=0, value=20000)
|
| 150 |
+
book_residual_value = st.number_input('Book Residual Value', min_value=0, value=18000)
|
| 151 |
+
market_value = st.number_input('Market Value', min_value=0, value=19000)
|
| 152 |
+
|
| 153 |
+
if st.button('Predict'):
|
| 154 |
+
input_data = {
|
| 155 |
+
'Car_Model': car_model,
|
| 156 |
+
'Car_Year': int(car_year),
|
| 157 |
+
'Assessment_Year': int(assessment_year),
|
| 158 |
+
'Starting_Asset_Value': float(starting_asset_value),
|
| 159 |
+
'Book_Residual_Value': float(book_residual_value),
|
| 160 |
+
'Market_Value': float(market_value)
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
response = requests.post(f'{API_URL}/predict/', json=input_data)
|
| 164 |
+
if response.status_code == 200:
|
| 165 |
+
prediction = response.json()['predicted_depreciation']
|
| 166 |
+
st.success(f'Predicted Depreciation: {prediction:.2f}%')
|
| 167 |
+
elif response.status_code == 404:
|
| 168 |
+
st.error('Model not found. Please create a model first.')
|
| 169 |
+
else:
|
| 170 |
+
st.error(f'Error making prediction: {response.json().get("error", "Unknown error")}')
|
| 171 |
+
|
| 172 |
+
if __name__ == '__main__':
|
| 173 |
+
try:
|
| 174 |
+
# Start Flask in a separate thread
|
| 175 |
+
threading.Thread(target=lambda: app.run(debug=False, use_reloader=False)).start()
|
| 176 |
+
|
| 177 |
+
# Run Streamlit
|
| 178 |
+
import streamlit.web.cli as stcli
|
| 179 |
+
import sys
|
| 180 |
+
|
| 181 |
+
sys.argv = ["streamlit", "run", __file__]
|
| 182 |
+
sys.exit(stcli.main())
|
| 183 |
+
except:
|
| 184 |
+
print("An exception occurred")
|
install.sh
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pip install -r requirements.txt
|
| 2 |
+
python app.py
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
flask-restx
|
| 3 |
+
Werkzeug
|
| 4 |
+
scikit-learn
|
| 5 |
+
pandas
|
| 6 |
+
numpy
|
| 7 |
+
joblib
|