Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import zipfile
|
4 |
+
import os
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
ZIP_FILE = "xnli-multilingual-nli-dataset.zip"
|
10 |
+
CSV_FILE = "en_test.csv"
|
11 |
+
EXTRACT_FOLDER = "extracted_data"
|
12 |
+
|
13 |
+
# Load and extract ZIP
|
14 |
+
@st.cache_data
|
15 |
+
def extract_and_load():
|
16 |
+
if not os.path.exists(EXTRACT_FOLDER):
|
17 |
+
with zipfile.ZipFile(ZIP_FILE, "r") as zip_ref:
|
18 |
+
zip_ref.extractall(EXTRACT_FOLDER)
|
19 |
+
csv_path = os.path.join(EXTRACT_FOLDER, CSV_FILE)
|
20 |
+
df = pd.read_csv(csv_path).dropna().sample(500)
|
21 |
+
return df[['premise', 'hypothesis', 'label']]
|
22 |
+
|
23 |
+
df = extract_and_load()
|
24 |
+
|
25 |
+
# Load models
|
26 |
+
nli_model = pipeline("text-classification", model="joeddav/xlm-roberta-large-xnli")
|
27 |
+
embedder = SentenceTransformer("sentence-transformers/distiluse-base-multilingual-cased-v2")
|
28 |
+
|
29 |
+
# UI
|
30 |
+
st.title("🌐 Multilingual RAG-style NLI Explorer")
|
31 |
+
st.markdown("Enter a sentence in **any language**, and the app will find a related statement from the dataset and infer their relationship.")
|
32 |
+
|
33 |
+
user_input = st.text_input("Enter your **hypothesis** (your own sentence):")
|
34 |
+
|
35 |
+
if user_input:
|
36 |
+
with st.spinner("Finding most relevant premise..."):
|
37 |
+
premise_embeddings = embedder.encode(df['premise'].tolist(), convert_to_tensor=True)
|
38 |
+
user_embedding = embedder.encode(user_input, convert_to_tensor=True)
|
39 |
+
|
40 |
+
top_hit = util.semantic_search(user_embedding, premise_embeddings, top_k=1)[0][0]
|
41 |
+
match_idx = top_hit['corpus_id']
|
42 |
+
selected_premise = df.iloc[match_idx]['premise']
|
43 |
+
|
44 |
+
st.subheader("🔍 Most Relevant Premise:")
|
45 |
+
st.write(selected_premise)
|
46 |
+
|
47 |
+
# Run NLI classification
|
48 |
+
full_input = f"{selected_premise} </s> {user_input}"
|
49 |
+
result = nli_model(full_input)[0]
|
50 |
+
|
51 |
+
st.subheader("🧠 Predicted Relationship:")
|
52 |
+
st.write(f"**{result['label']}** (confidence: {result['score']:.2f})")
|