rahideer commited on
Commit
913f5f9
·
verified ·
1 Parent(s): cc01eb4

Create rag_pipeline.py

Browse files
Files changed (1) hide show
  1. rag_pipeline.py +33 -0
rag_pipeline.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer
2
+ import faiss
3
+ import numpy as np
4
+ import pandas as pd
5
+ from transformers import pipeline
6
+
7
+ class RAGPipeline:
8
+ def __init__(self, dataset_path):
9
+ self.embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
10
+ self.generator = pipeline("text2text-generation", model="google/flan-t5-base")
11
+ self.data = pd.read_csv(dataset_path)
12
+ self.documents = self.data['context'].tolist()
13
+ self.questions = self.data['question'].tolist()
14
+
15
+ self.index = self.build_faiss_index()
16
+
17
+ def build_faiss_index(self):
18
+ embeddings = self.embedder.encode(self.documents, convert_to_numpy=True)
19
+ index = faiss.IndexFlatL2(embeddings.shape[1])
20
+ index.add(embeddings)
21
+ return index
22
+
23
+ def retrieve(self, query, top_k=5):
24
+ query_embedding = self.embedder.encode([query], convert_to_numpy=True)
25
+ scores, indices = self.index.search(query_embedding, top_k)
26
+ return [self.documents[i] for i in indices[0]]
27
+
28
+ def generate_answer(self, query):
29
+ docs = self.retrieve(query)
30
+ context = " ".join(docs)
31
+ prompt = f"Answer the following question using the provided context:\nContext: {context}\nQuestion: {query}"
32
+ result = self.generator(prompt, max_length=200, do_sample=True)
33
+ return result[0]['generated_text']