Spaces:
Sleeping
Sleeping
Create rag_pipeline.py
Browse files- rag_pipeline.py +33 -0
rag_pipeline.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
class RAGPipeline:
|
8 |
+
def __init__(self, dataset_path):
|
9 |
+
self.embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
10 |
+
self.generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
11 |
+
self.data = pd.read_csv(dataset_path)
|
12 |
+
self.documents = self.data['context'].tolist()
|
13 |
+
self.questions = self.data['question'].tolist()
|
14 |
+
|
15 |
+
self.index = self.build_faiss_index()
|
16 |
+
|
17 |
+
def build_faiss_index(self):
|
18 |
+
embeddings = self.embedder.encode(self.documents, convert_to_numpy=True)
|
19 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
20 |
+
index.add(embeddings)
|
21 |
+
return index
|
22 |
+
|
23 |
+
def retrieve(self, query, top_k=5):
|
24 |
+
query_embedding = self.embedder.encode([query], convert_to_numpy=True)
|
25 |
+
scores, indices = self.index.search(query_embedding, top_k)
|
26 |
+
return [self.documents[i] for i in indices[0]]
|
27 |
+
|
28 |
+
def generate_answer(self, query):
|
29 |
+
docs = self.retrieve(query)
|
30 |
+
context = " ".join(docs)
|
31 |
+
prompt = f"Answer the following question using the provided context:\nContext: {context}\nQuestion: {query}"
|
32 |
+
result = self.generator(prompt, max_length=200, do_sample=True)
|
33 |
+
return result[0]['generated_text']
|