Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,40 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
from datasets import load_dataset
|
4 |
-
import torch
|
5 |
|
6 |
-
# Load
|
7 |
dataset = load_dataset("pubmed_qa", split="test")
|
8 |
-
|
9 |
-
# Initialize RAG components
|
10 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
11 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
if query:
|
39 |
-
with st.spinner("Searching for the answer..."):
|
40 |
-
answer = get_medical_answer(query)
|
41 |
st.write(f"Answer: {answer}")
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
from datasets import load_dataset
|
|
|
4 |
|
5 |
+
# Load dataset (pubmed_qa) and tokenizer
|
6 |
dataset = load_dataset("pubmed_qa", split="test")
|
|
|
|
|
7 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
8 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="compressed", passages_path="./path_to_dataset")
|
9 |
+
|
10 |
+
# Initialize the RAG model
|
11 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
12 |
+
|
13 |
+
# Define Streamlit app
|
14 |
+
st.title('Medical QA Assistant')
|
15 |
+
|
16 |
+
st.markdown("This app uses a RAG model to answer medical queries based on the PubMed QA dataset.")
|
17 |
+
|
18 |
+
# User input for query
|
19 |
+
user_query = st.text_input("Ask a medical question:")
|
20 |
+
|
21 |
+
if user_query:
|
22 |
+
# Tokenize input question and retrieve related documents
|
23 |
+
inputs = tokenizer(user_query, return_tensors="pt")
|
24 |
+
input_ids = inputs['input_ids']
|
25 |
+
question_encoder_outputs = model.question_encoder(input_ids)
|
26 |
+
|
27 |
+
# Use the retriever to get context
|
28 |
+
retrieved_docs = retriever.retrieve(input_ids)
|
29 |
+
|
30 |
+
# Generate an answer based on the context
|
31 |
+
generated_ids = model.generate(input_ids, context_input_ids=retrieved_docs)
|
32 |
+
answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
33 |
+
|
34 |
+
# Show the answer
|
|
|
|
|
|
|
35 |
st.write(f"Answer: {answer}")
|
36 |
+
|
37 |
+
# Display the most relevant documents
|
38 |
+
st.subheader("Relevant Documents:")
|
39 |
+
for doc in retrieved_docs:
|
40 |
+
st.write(doc['text'][:300] + '...') # Display first 300 characters of each doc
|