Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,41 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
st.markdown("Ask any medical question and get evidence-based answers from PubMed.")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
-
if
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
st.success(answer)
|
22 |
-
else:
|
23 |
-
st.warning("Please enter a question.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
+
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
|
6 |
+
# Load the dataset
|
7 |
+
dataset = load_dataset("pubmed_qa", split="test")
|
|
|
8 |
|
9 |
+
# Initialize RAG components
|
10 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
11 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="default", use_dummy_dataset=True)
|
12 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
|
13 |
|
14 |
+
# Function to get the answer to a medical query
|
15 |
+
def get_medical_answer(query):
|
16 |
+
# Encode the query to retrieve relevant documents
|
17 |
+
inputs = tokenizer(query, return_tensors="pt")
|
18 |
+
input_ids = inputs["input_ids"]
|
19 |
+
|
20 |
+
# Retrieve relevant documents
|
21 |
+
docs = retriever(input_ids=input_ids, return_tensors="pt")
|
22 |
+
|
23 |
+
# Generate the answer from the model
|
24 |
+
generated_ids = model.generate(input_ids=input_ids, context_input_ids=docs["context_input_ids"],
|
25 |
+
context_attention_mask=docs["context_attention_mask"])
|
26 |
+
|
27 |
+
# Decode the generated answer
|
28 |
+
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
29 |
+
return generated_answer
|
30 |
|
31 |
+
# Streamlit UI
|
32 |
+
st.title("Medical QA Assistant")
|
33 |
+
st.write("Ask any medical question, and I will answer it based on PubMed papers!")
|
34 |
|
35 |
+
# Input text box for queries
|
36 |
+
query = st.text_input("Enter your medical question:")
|
37 |
|
38 |
+
if query:
|
39 |
+
with st.spinner("Searching for the answer..."):
|
40 |
+
answer = get_medical_answer(query)
|
41 |
+
st.write(f"Answer: {answer}")
|
|
|
|
|
|