from datasets import load_dataset import pandas as pd from sentence_transformers import SentenceTransformer import faiss from transformers import pipeline class RAGPipeline: def __init__(self): self.embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") self.generator = pipeline("text2text-generation", model="google/flan-t5-base") # Load dataset directly ds = load_dataset("pubmed_qa", "pqa_labeled", split="train[:500]") self.documents = ds["context"] self.questions = ds["question"] self.index = self.build_faiss_index() def build_faiss_index(self): embeddings = self.embedder.encode(self.documents, convert_to_numpy=True) index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) return index def retrieve(self, query, top_k=5): query_embedding = self.embedder.encode([query], convert_to_numpy=True) scores, indices = self.index.search(query_embedding, top_k) return [self.documents[i] for i in indices[0]] def generate_answer(self, query): docs = self.retrieve(query) context = " ".join(docs) prompt = f"Answer the following medical question using the context:\nContext: {context}\nQuestion: {query}" result = self.generator(prompt, max_length=200, do_sample=True) return result[0]['generated_text']