import streamlit as st from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration from datasets import load_dataset import torch # Load the dataset dataset = load_dataset("pubmed_qa", split="test") # Initialize RAG components tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="default", use_dummy_dataset=True) model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq") # Function to get the answer to a medical query def get_medical_answer(query): # Encode the query to retrieve relevant documents inputs = tokenizer(query, return_tensors="pt") input_ids = inputs["input_ids"] # Retrieve relevant documents docs = retriever(input_ids=input_ids, return_tensors="pt") # Generate the answer from the model generated_ids = model.generate(input_ids=input_ids, context_input_ids=docs["context_input_ids"], context_attention_mask=docs["context_attention_mask"]) # Decode the generated answer generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_answer # Streamlit UI st.title("Medical QA Assistant") st.write("Ask any medical question, and I will answer it based on PubMed papers!") # Input text box for queries query = st.text_input("Enter your medical question:") if query: with st.spinner("Searching for the answer..."): answer = get_medical_answer(query) st.write(f"Answer: {answer}")