import streamlit as st from rag_pipeline import RAGPipeline st.set_page_config(page_title="Medical QA Assistant", page_icon="🩺") st.title("🩺 Medical QA Assistant") st.markdown("Ask any medical question and get evidence-based answers from PubMed.") @st.cache_resource def load_rag(): return RAGPipeline("data/pubmed_qa_dataset.csv") rag = load_rag() question = st.text_input("Enter your medical question:") if st.button("Get Answer"): if question: with st.spinner("Searching PubMed and generating answer..."): answer = rag.generate_answer(question) st.success(answer) else: st.warning("Please enter a question.")