from sentence_transformers import SentenceTransformer import faiss import numpy as np import pandas as pd from transformers import pipeline class RAGPipeline: def __init__(self, dataset_path): self.embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") self.generator = pipeline("text2text-generation", model="google/flan-t5-base") self.data = pd.read_csv(dataset_path) self.documents = self.data['context'].tolist() self.questions = self.data['question'].tolist() self.index = self.build_faiss_index() def build_faiss_index(self): embeddings = self.embedder.encode(self.documents, convert_to_numpy=True) index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) return index def retrieve(self, query, top_k=5): query_embedding = self.embedder.encode([query], convert_to_numpy=True) scores, indices = self.index.search(query_embedding, top_k) return [self.documents[i] for i in indices[0]] def generate_answer(self, query): docs = self.retrieve(query) context = " ".join(docs) prompt = f"Answer the following question using the provided context:\nContext: {context}\nQuestion: {query}" result = self.generator(prompt, max_length=200, do_sample=True) return result[0]['generated_text']