Update app.py
Browse files
app.py
CHANGED
@@ -1,87 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
-
from transformers import pipeline
|
5 |
-
import time
|
6 |
|
7 |
-
#
|
8 |
-
st.markdown("""
|
9 |
-
<style>
|
10 |
-
.title {
|
11 |
-
font-size: 40px;
|
12 |
-
color: #4CAF50;
|
13 |
-
font-weight: bold;
|
14 |
-
text-align: center;
|
15 |
-
}
|
16 |
-
.sub-title {
|
17 |
-
font-size: 20px;
|
18 |
-
color: #333;
|
19 |
-
text-align: center;
|
20 |
-
}
|
21 |
-
.upload-button {
|
22 |
-
background-color: #4CAF50;
|
23 |
-
color: white;
|
24 |
-
border-radius: 5px;
|
25 |
-
padding: 10px 20px;
|
26 |
-
font-size: 18px;
|
27 |
-
}
|
28 |
-
.upload-button:hover {
|
29 |
-
background-color: #45a049;
|
30 |
-
}
|
31 |
-
.prediction {
|
32 |
-
font-size: 22px;
|
33 |
-
font-weight: bold;
|
34 |
-
color: #388E3C;
|
35 |
-
text-align: center;
|
36 |
-
}
|
37 |
-
.confidence {
|
38 |
-
font-size: 18px;
|
39 |
-
color: #555;
|
40 |
-
text-align: center;
|
41 |
-
}
|
42 |
-
.image-container {
|
43 |
-
display: flex;
|
44 |
-
justify-content: center;
|
45 |
-
margin-top: 30px;
|
46 |
-
}
|
47 |
-
.footer {
|
48 |
-
text-align: center;
|
49 |
-
margin-top: 50px;
|
50 |
-
font-size: 14px;
|
51 |
-
color: #777;
|
52 |
-
}
|
53 |
-
</style>
|
54 |
-
""", unsafe_allow_html=True)
|
55 |
-
|
56 |
-
# Load model from Hugging Face
|
57 |
@st.cache_resource
|
58 |
def load_model():
|
59 |
model = pipeline('image-classification', model='google/vit-base-patch16-224-in21k')
|
60 |
return model
|
61 |
|
|
|
|
|
|
|
62 |
model = load_model()
|
63 |
|
64 |
# Streamlit app UI
|
65 |
-
st.
|
66 |
-
st.
|
67 |
|
68 |
# File uploader for plant image
|
69 |
-
uploaded_file = st.file_uploader("Choose a plant image...", type=["jpg", "jpeg", "png"]
|
70 |
|
71 |
if uploaded_file is not None:
|
72 |
-
#
|
73 |
image = Image.open(uploaded_file)
|
74 |
st.image(image, caption="Uploaded Plant Image.", use_column_width=True)
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
time.sleep(2) # Simulate loading time
|
79 |
-
predictions = model(image)
|
80 |
|
81 |
-
#
|
82 |
-
st.
|
83 |
-
|
84 |
-
|
85 |
-
# Footer for extra info or tips
|
86 |
-
st.markdown('<div class="footer">Powered by Streamlit πΈ</div>', unsafe_allow_html=True)
|
87 |
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from transformers import pipeline, AutoFeatureExtractor
|
|
|
5 |
|
6 |
+
# Load the model and feature extractor (image processor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
model = pipeline('image-classification', model='google/vit-base-patch16-224-in21k')
|
10 |
return model
|
11 |
|
12 |
+
# Initialize the feature extractor
|
13 |
+
extractor = AutoFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
14 |
+
|
15 |
model = load_model()
|
16 |
|
17 |
# Streamlit app UI
|
18 |
+
st.title("π± Plant Identification App π±")
|
19 |
+
st.write("Upload a plant image and let the app identify its species!")
|
20 |
|
21 |
# File uploader for plant image
|
22 |
+
uploaded_file = st.file_uploader("Choose a plant image...", type=["jpg", "jpeg", "png"])
|
23 |
|
24 |
if uploaded_file is not None:
|
25 |
+
# Open and display the uploaded image
|
26 |
image = Image.open(uploaded_file)
|
27 |
st.image(image, caption="Uploaded Plant Image.", use_column_width=True)
|
28 |
|
29 |
+
# Preprocess the image with the feature extractor
|
30 |
+
inputs = extractor(images=image, return_tensors="pt", padding=True)
|
|
|
|
|
31 |
|
32 |
+
# Run the classification
|
33 |
+
with st.spinner('Classifying plant species...'):
|
34 |
+
predictions = model(inputs['pixel_values'])
|
|
|
|
|
|
|
35 |
|
36 |
+
# Display prediction results
|
37 |
+
st.write(f"Predicted Species: {predictions[0]['label']}")
|
38 |
+
st.write(f"Confidence: {predictions[0]['score']*100:.2f}%")
|