import streamlit as st from PIL import Image from transformers import AutoModelForImageClassification, ViTImageProcessor import torch # Load the model and processor @st.cache_resource def load_model(): model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224-in21k") processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") return model, processor model, processor = load_model() # Streamlit app UI st.title("🌱 Plant Identification App 🌱") st.write("Upload a plant image and let the app identify its species!") # File uploader for plant image uploaded_file = st.file_uploader("Choose a plant image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Open and display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Plant Image.", use_column_width=True) # Preprocess the image using the processor inputs = processor(images=image, return_tensors="pt", padding=True) # Run the classification with st.spinner('Classifying plant species...'): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() # Get the label of the predicted class label = model.config.id2label[predicted_class_idx] # Display prediction results st.write(f"Predicted Species: {label}") st.write(f"Confidence: {torch.softmax(logits, dim=-1)[0][predicted_class_idx]*100:.2f}%")