Upload 3 files
Browse files- modules/analysis.py +52 -0
- modules/parser.py +51 -0
- modules/vectorizer.py +21 -0
modules/analysis.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import RetrievalQA
|
2 |
+
from langchain.llms import HuggingFacePipeline
|
3 |
+
from transformers import pipeline
|
4 |
+
from modules import parser, vectorizer
|
5 |
+
|
6 |
+
def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
|
7 |
+
"""
|
8 |
+
Main logic that runs when the user clicks 'Analyze Logs'.
|
9 |
+
It combines file and text inputs, applies embeddings,
|
10 |
+
and performs question answering using a language model.
|
11 |
+
"""
|
12 |
+
logs_text = ""
|
13 |
+
|
14 |
+
# Combine all uploaded files into one text string
|
15 |
+
if uploaded_files:
|
16 |
+
logs_text += parser.parse_uploaded_files(uploaded_files)
|
17 |
+
|
18 |
+
# Add manual pasted text logs
|
19 |
+
if text_input:
|
20 |
+
logs_text += "\n" + text_input
|
21 |
+
|
22 |
+
# Show error if no log input provided
|
23 |
+
if not logs_text.strip():
|
24 |
+
return "❌ No logs provided.", None, None, None
|
25 |
+
|
26 |
+
# Use either free-form query or a quick action
|
27 |
+
query_text = query if query else quick_action
|
28 |
+
if not query_text:
|
29 |
+
return "❌ No query provided.", None, None, None
|
30 |
+
|
31 |
+
# Chunk logs and embed them
|
32 |
+
docs = vectorizer.prepare_documents(logs_text)
|
33 |
+
vectordb = vectorizer.create_vectorstore(docs)
|
34 |
+
|
35 |
+
# Load a small Hugging Face text generation pipeline (GPT-2 here)
|
36 |
+
pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature)
|
37 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
38 |
+
|
39 |
+
# Create LangChain retrieval-based QA chain
|
40 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
|
41 |
+
|
42 |
+
# Run the query against embedded document chunks
|
43 |
+
result = qa.run(query_text)
|
44 |
+
|
45 |
+
# -------- Mocked example chart and alert outputs --------
|
46 |
+
bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
|
47 |
+
pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
|
48 |
+
alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
|
49 |
+
("WARNING", "4 port scanning alerts from 10.0.0.8")]
|
50 |
+
|
51 |
+
# Return structured outputs to Gradio UI
|
52 |
+
return result, bar_data, pie_data, alerts
|
modules/parser.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import fitz # PyMuPDF for reading PDFs
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
7 |
+
"""
|
8 |
+
Extracts plain text from a PDF file using PyMuPDF.
|
9 |
+
"""
|
10 |
+
doc = fitz.open(file_path)
|
11 |
+
text = ""
|
12 |
+
for page in doc:
|
13 |
+
text += page.get_text() # Extract text from each page
|
14 |
+
return text
|
15 |
+
|
16 |
+
def read_log_file(file_path: str) -> str:
|
17 |
+
"""
|
18 |
+
Reads a .log or .txt file and returns its content as text.
|
19 |
+
"""
|
20 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
21 |
+
return f.read()
|
22 |
+
|
23 |
+
def detect_log_format(text: str) -> str:
|
24 |
+
"""
|
25 |
+
Detects the log format using basic pattern matching.
|
26 |
+
Returns one of: 'syslog', 'json', 'cef', or 'unknown'.
|
27 |
+
"""
|
28 |
+
if re.search(r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}", text):
|
29 |
+
return "syslog"
|
30 |
+
elif re.search(r"\{.*\}", text):
|
31 |
+
return "json"
|
32 |
+
elif "CEF:" in text:
|
33 |
+
return "cef"
|
34 |
+
else:
|
35 |
+
return "unknown"
|
36 |
+
|
37 |
+
def parse_uploaded_files(files: List[str]) -> str:
|
38 |
+
"""
|
39 |
+
Accepts a list of uploaded files, extracts content from each,
|
40 |
+
and returns all logs as one combined string.
|
41 |
+
"""
|
42 |
+
all_logs = ""
|
43 |
+
for file_obj in files:
|
44 |
+
file_path = file_obj.name
|
45 |
+
|
46 |
+
if file_path.endswith('.pdf'):
|
47 |
+
all_logs += extract_text_from_pdf(file_path) + "\n"
|
48 |
+
elif file_path.endswith(('.log', '.txt')):
|
49 |
+
all_logs += read_log_file(file_path) + "\n"
|
50 |
+
|
51 |
+
return all_logs
|
modules/vectorizer.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.text_splitter import CharacterTextSplitter
|
2 |
+
from langchain.vectorstores import FAISS
|
3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.schema import Document
|
5 |
+
|
6 |
+
def prepare_documents(text: str, chunk_size=1000, chunk_overlap=200):
|
7 |
+
"""
|
8 |
+
Splits the combined log text into smaller chunks using LangChain's splitter,
|
9 |
+
so they can be processed and embedded efficiently.
|
10 |
+
"""
|
11 |
+
docs = [Document(page_content=text)] # Wrap raw text in a Document
|
12 |
+
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
13 |
+
return splitter.split_documents(docs)
|
14 |
+
|
15 |
+
def create_vectorstore(documents, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
16 |
+
"""
|
17 |
+
Uses Hugging Face Transformers to embed the document chunks,
|
18 |
+
and stores them in a FAISS vector database for fast retrieval.
|
19 |
+
"""
|
20 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
21 |
+
return FAISS.from_documents(documents, embeddings)
|