Update modules/analysis.py
Browse files- modules/analysis.py +37 -52
modules/analysis.py
CHANGED
|
@@ -1,52 +1,37 @@
|
|
| 1 |
-
from langchain.chains import RetrievalQA
|
| 2 |
-
from
|
| 3 |
-
from transformers import pipeline
|
| 4 |
-
from modules import parser, vectorizer
|
| 5 |
-
|
| 6 |
-
def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
|
| 7 |
-
""
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
if
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
if
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# Create LangChain retrieval-based QA chain
|
| 40 |
-
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
|
| 41 |
-
|
| 42 |
-
# Run the query against embedded document chunks
|
| 43 |
-
result = qa.run(query_text)
|
| 44 |
-
|
| 45 |
-
# -------- Mocked example chart and alert outputs --------
|
| 46 |
-
bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
|
| 47 |
-
pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
|
| 48 |
-
alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
|
| 49 |
-
("WARNING", "4 port scanning alerts from 10.0.0.8")]
|
| 50 |
-
|
| 51 |
-
# Return structured outputs to Gradio UI
|
| 52 |
-
return result, bar_data, pie_data, alerts
|
|
|
|
| 1 |
+
from langchain.chains import RetrievalQA
|
| 2 |
+
from langchain_community.llms import HuggingFacePipeline # ✅ Updated import
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from modules import parser, vectorizer
|
| 5 |
+
|
| 6 |
+
def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
|
| 7 |
+
logs_text = ""
|
| 8 |
+
|
| 9 |
+
if uploaded_files:
|
| 10 |
+
logs_text += parser.parse_uploaded_files(uploaded_files)
|
| 11 |
+
|
| 12 |
+
if text_input:
|
| 13 |
+
logs_text += "\n" + text_input
|
| 14 |
+
|
| 15 |
+
if not logs_text.strip():
|
| 16 |
+
return "❌ No logs provided.", None, None, None
|
| 17 |
+
|
| 18 |
+
query_text = query if query else quick_action
|
| 19 |
+
if not query_text:
|
| 20 |
+
return "❌ No query provided.", None, None, None
|
| 21 |
+
|
| 22 |
+
docs = vectorizer.prepare_documents(logs_text)
|
| 23 |
+
vectordb = vectorizer.create_vectorstore(docs)
|
| 24 |
+
|
| 25 |
+
pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature)
|
| 26 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 27 |
+
|
| 28 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
|
| 29 |
+
result = qa.run(query_text)
|
| 30 |
+
|
| 31 |
+
# Example mock output
|
| 32 |
+
bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
|
| 33 |
+
pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
|
| 34 |
+
alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
|
| 35 |
+
("WARNING", "4 port scanning alerts from 10.0.0.8")]
|
| 36 |
+
|
| 37 |
+
return result, bar_data, pie_data, alerts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|