from langchain.chains import RetrievalQA from langchain.llms import HuggingFacePipeline from transformers import pipeline from modules import parser, vectorizer def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time): """ Main logic that runs when the user clicks 'Analyze Logs'. It combines file and text inputs, applies embeddings, and performs question answering using a language model. """ logs_text = "" # Combine all uploaded files into one text string if uploaded_files: logs_text += parser.parse_uploaded_files(uploaded_files) # Add manual pasted text logs if text_input: logs_text += "\n" + text_input # Show error if no log input provided if not logs_text.strip(): return "❌ No logs provided.", None, None, None # Use either free-form query or a quick action query_text = query if query else quick_action if not query_text: return "❌ No query provided.", None, None, None # Chunk logs and embed them docs = vectorizer.prepare_documents(logs_text) vectordb = vectorizer.create_vectorstore(docs) # Load a small Hugging Face text generation pipeline (GPT-2 here) pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature) llm = HuggingFacePipeline(pipeline=pipe) # Create LangChain retrieval-based QA chain qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever()) # Run the query against embedded document chunks result = qa.run(query_text) # -------- Mocked example chart and alert outputs -------- bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]} pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]} alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"), ("WARNING", "4 port scanning alerts from 10.0.0.8")] # Return structured outputs to Gradio UI return result, bar_data, pie_data, alerts