from langchain.text_splitter import CharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.schema import Document def prepare_documents(text: str, chunk_size=1000, chunk_overlap=200): """ Splits long log text into smaller chunks for embedding. """ docs = [Document(page_content=text)] splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) return splitter.split_documents(docs) def create_vectorstore(documents, model_name="sentence-transformers/all-MiniLM-L6-v2"): """ Embeds chunks and stores them in a FAISS vector DB for retrieval. """ embeddings = HuggingFaceEmbeddings(model_name=model_name) return FAISS.from_documents(documents, embeddings)