Spaces:
Sleeping
Sleeping
# Running on local URL: http://127.0.0.1:7860 | |
import gradio as gr # Gradio: for creating web-based user interfaces | |
import PyPDF2 # PyPDF2: for reading PDF files | |
import tempfile # tempfile: to safely handle temporary files | |
from langchain.prompts import PromptTemplate # LangChain: for managing prompt templates | |
from langchain_huggingface.llms import HuggingFacePipeline # LangChain integration with HuggingFace models | |
# Define a summarization class | |
class TextSummarizer: | |
def __init__(self): | |
# Define the model to use for summarization | |
self.model_id = "facebook/bart-large-cnn" | |
def summarize_text(self, article_text, max_length=150, min_length=30): | |
# Load a summarization pipeline with custom length settings | |
llm = HuggingFacePipeline.from_model_id( | |
model_id=self.model_id, | |
task="summarization", | |
pipeline_kwargs={ | |
#"max_length": 250, | |
#"do_sample": True, | |
#"temperature": 0.7, # More creative | |
#"top_k": 50, # Limit to top 50 tokens | |
#"top_p": 0.95 # Use nucleus sampling | |
"max_length": max_length, | |
"min_length": min_length, | |
"do_sample": False # Deterministic output | |
} | |
) | |
# Create a basic prompt template that just passes the text | |
prompt = PromptTemplate(input_variables=["document"], template="""{document}""") | |
# Format the article text into the prompt | |
prompt_input = prompt.format(document=article_text) | |
# Generate the summary using the model | |
summary = llm.__call__(prompt_input) | |
# If the model returns a list of summaries, extract the actual summary text | |
if isinstance(summary, list): | |
return summary[0]['summary_text'] if 'summary_text' in summary[0] else str(summary[0]) | |
return str(summary) # Fallback for other formats | |
# Function to extract text from an uploaded PDF | |
def pdf_to_text(pdf_file): | |
try: | |
# Create a temporary file to write the uploaded PDF bytes | |
with tempfile.NamedTemporaryFile(delete=False) as tmp: | |
tmp.write(pdf_file) # Write raw bytes directly | |
tmp.flush() # Make sure data is written to disk | |
# Use PyPDF2 to read and extract text | |
reader = PyPDF2.PdfReader(tmp.name) | |
text = "\n".join(page.extract_text() or "" for page in reader.pages) | |
# Return cleaned-up text or a message if extraction fails | |
return text.strip() if text.strip() else "No extractable text found in the PDF." | |
except Exception as e: | |
return f"Error reading PDF: {str(e)}" # Return readable error message | |
# Instantiate the summarizer class | |
summarizer = TextSummarizer() | |
# Summarize input with user-defined maximum length | |
def summarize_input(text, max_words): | |
if not text.strip(): | |
return "Please enter or extract some text first." | |
try: | |
# Convert max_words input to integer | |
max_length = int(max_words) | |
# Set a safe minimum length for quality summaries | |
min_length = max(30, max_length // 4) | |
# Generate the summary | |
return summarizer.summarize_text(text, max_length=max_length, min_length=min_length) | |
except Exception as e: | |
return f"Error during summarization: {str(e)}" | |
# Build the Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("## π Text & PDF Summarizer with Length Control") | |
with gr.Row(): | |
# Text input for manually entering article | |
text_input = gr.Textbox(label="Enter article text", lines=15, placeholder="Paste your article here...") | |
# Upload input for PDF files | |
pdf_file = gr.File(label="Or upload PDF", file_types=[".pdf"], type="binary") | |
# User input for controlling max summary length | |
max_words = gr.Number(label="Max summary word count", value=150, precision=0) | |
with gr.Row(): | |
# Button to convert PDF to text | |
convert_btn = gr.Button("Convert PDF to Text") | |
# Button to generate the summary | |
summary_btn = gr.Button("Summarize Text") | |
# Textbox to display the summary output | |
output_text = gr.Textbox(label="Summary", lines=10) | |
# Link buttons to their respective functions | |
convert_btn.click(fn=pdf_to_text, inputs=pdf_file, outputs=text_input) | |
summary_btn.click(fn=summarize_input, inputs=[text_input, max_words], outputs=output_text) | |
# Launch the app if run directly | |
if __name__ == "__main__": | |
demo.launch() | |