Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
from pathlib import PurePath, Path
|
7 |
+
import time
|
8 |
+
import argparse
|
9 |
+
import traceback
|
10 |
+
import einops
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import datetime
|
14 |
+
import spaces
|
15 |
+
# Version information
|
16 |
+
from modules.version import APP_VERSION
|
17 |
+
|
18 |
+
# Set environment variables
|
19 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
20 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false' # Prevent tokenizers parallelism warning
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
from PIL import Image
|
26 |
+
from PIL.PngImagePlugin import PngInfo
|
27 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
28 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
29 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
30 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp
|
31 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
32 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
33 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
34 |
+
from diffusers_helper.thread_utils import AsyncStream
|
35 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_html
|
36 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
37 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
38 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
39 |
+
from diffusers_helper import lora_utils
|
40 |
+
from diffusers_helper.lora_utils import load_lora, unload_all_loras
|
41 |
+
|
42 |
+
# Import model generators
|
43 |
+
from modules.generators import create_model_generator
|
44 |
+
|
45 |
+
# Global cache for prompt embeddings
|
46 |
+
prompt_embedding_cache = {}
|
47 |
+
# Import from modules
|
48 |
+
from modules.video_queue import VideoJobQueue, JobStatus
|
49 |
+
from modules.prompt_handler import parse_timestamped_prompt
|
50 |
+
from modules.interface import create_interface, format_queue_status
|
51 |
+
from modules.settings import Settings
|
52 |
+
from modules import DUMMY_LORA_NAME # Import the constant
|
53 |
+
from modules.pipelines.metadata_utils import create_metadata
|
54 |
+
from modules.pipelines.worker import worker
|
55 |
+
|
56 |
+
# Try to suppress annoyingly persistent Windows asyncio proactor errors
|
57 |
+
if os.name == 'nt': # Windows only
|
58 |
+
import asyncio
|
59 |
+
from functools import wraps
|
60 |
+
|
61 |
+
# Replace the problematic proactor event loop with selector event loop
|
62 |
+
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
63 |
+
|
64 |
+
# Patch the base transport's close method
|
65 |
+
def silence_event_loop_closed(func):
|
66 |
+
@wraps(func)
|
67 |
+
def wrapper(self, *args, **kwargs):
|
68 |
+
try:
|
69 |
+
return func(self, *args, **kwargs)
|
70 |
+
except RuntimeError as e:
|
71 |
+
if str(e) != 'Event loop is closed':
|
72 |
+
raise
|
73 |
+
return wrapper
|
74 |
+
|
75 |
+
# Apply the patch
|
76 |
+
if hasattr(asyncio.proactor_events._ProactorBasePipeTransport, '_call_connection_lost'):
|
77 |
+
asyncio.proactor_events._ProactorBasePipeTransport._call_connection_lost = silence_event_loop_closed(
|
78 |
+
asyncio.proactor_events._ProactorBasePipeTransport._call_connection_lost)
|
79 |
+
|
80 |
+
# ADDED: Debug function to verify LoRA state
|
81 |
+
def verify_lora_state(transformer, label=""):
|
82 |
+
"""Debug function to verify the state of LoRAs in a transformer model"""
|
83 |
+
if transformer is None:
|
84 |
+
print(f"[{label}] Transformer is None, cannot verify LoRA state")
|
85 |
+
return
|
86 |
+
|
87 |
+
has_loras = False
|
88 |
+
if hasattr(transformer, 'peft_config'):
|
89 |
+
adapter_names = list(transformer.peft_config.keys()) if transformer.peft_config else []
|
90 |
+
if adapter_names:
|
91 |
+
has_loras = True
|
92 |
+
print(f"[{label}] Transformer has LoRAs: {', '.join(adapter_names)}")
|
93 |
+
else:
|
94 |
+
print(f"[{label}] Transformer has no LoRAs in peft_config")
|
95 |
+
else:
|
96 |
+
print(f"[{label}] Transformer has no peft_config attribute")
|
97 |
+
|
98 |
+
# Check for any LoRA modules
|
99 |
+
for name, module in transformer.named_modules():
|
100 |
+
if hasattr(module, 'lora_A') and module.lora_A:
|
101 |
+
has_loras = True
|
102 |
+
# print(f"[{label}] Found lora_A in module {name}")
|
103 |
+
if hasattr(module, 'lora_B') and module.lora_B:
|
104 |
+
has_loras = True
|
105 |
+
# print(f"[{label}] Found lora_B in module {name}")
|
106 |
+
|
107 |
+
if not has_loras:
|
108 |
+
print(f"[{label}] No LoRA components found in transformer")
|
109 |
+
|
110 |
+
|
111 |
+
parser = argparse.ArgumentParser()
|
112 |
+
parser.add_argument('--share', action='store_true')
|
113 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
114 |
+
parser.add_argument("--port", type=int, required=False)
|
115 |
+
parser.add_argument("--inbrowser", action='store_true')
|
116 |
+
parser.add_argument("--lora", type=str, default=None, help="Lora path (comma separated for multiple)")
|
117 |
+
parser.add_argument("--offline", action='store_true', help="Run in offline mode")
|
118 |
+
args = parser.parse_args()
|
119 |
+
|
120 |
+
print(args)
|
121 |
+
|
122 |
+
if args.offline:
|
123 |
+
print("Offline mode enabled.")
|
124 |
+
os.environ['HF_HUB_OFFLINE'] = '1'
|
125 |
+
else:
|
126 |
+
if 'HF_HUB_OFFLINE' in os.environ:
|
127 |
+
del os.environ['HF_HUB_OFFLINE']
|
128 |
+
|
129 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
130 |
+
high_vram = free_mem_gb > 60
|
131 |
+
|
132 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
133 |
+
print(f'High-VRAM Mode: {high_vram}')
|
134 |
+
|
135 |
+
# Load models
|
136 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
137 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
138 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
139 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
140 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
141 |
+
|
142 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
143 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
144 |
+
|
145 |
+
# Initialize model generator placeholder
|
146 |
+
current_generator = None # Will hold the currently active model generator
|
147 |
+
|
148 |
+
# Load models based on VRAM availability later
|
149 |
+
|
150 |
+
# Configure models
|
151 |
+
vae.eval()
|
152 |
+
text_encoder.eval()
|
153 |
+
text_encoder_2.eval()
|
154 |
+
image_encoder.eval()
|
155 |
+
|
156 |
+
if not high_vram:
|
157 |
+
vae.enable_slicing()
|
158 |
+
vae.enable_tiling()
|
159 |
+
|
160 |
+
|
161 |
+
vae.to(dtype=torch.float16)
|
162 |
+
image_encoder.to(dtype=torch.float16)
|
163 |
+
text_encoder.to(dtype=torch.float16)
|
164 |
+
text_encoder_2.to(dtype=torch.float16)
|
165 |
+
|
166 |
+
vae.requires_grad_(False)
|
167 |
+
text_encoder.requires_grad_(False)
|
168 |
+
text_encoder_2.requires_grad_(False)
|
169 |
+
image_encoder.requires_grad_(False)
|
170 |
+
|
171 |
+
# Create lora directory if it doesn't exist
|
172 |
+
lora_dir = os.path.join(os.path.dirname(__file__), 'loras')
|
173 |
+
os.makedirs(lora_dir, exist_ok=True)
|
174 |
+
|
175 |
+
# Initialize LoRA support - moved scanning after settings load
|
176 |
+
lora_names = []
|
177 |
+
lora_values = [] # This seems unused for population, might be related to weights later
|
178 |
+
|
179 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
180 |
+
|
181 |
+
# Define default LoRA folder path relative to the script directory (used if setting is missing)
|
182 |
+
default_lora_folder = os.path.join(script_dir, "loras")
|
183 |
+
os.makedirs(default_lora_folder, exist_ok=True) # Ensure default exists
|
184 |
+
|
185 |
+
if not high_vram:
|
186 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
187 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
188 |
+
else:
|
189 |
+
text_encoder.to(gpu)
|
190 |
+
text_encoder_2.to(gpu)
|
191 |
+
image_encoder.to(gpu)
|
192 |
+
vae.to(gpu)
|
193 |
+
|
194 |
+
stream = AsyncStream()
|
195 |
+
|
196 |
+
outputs_folder = './outputs/'
|
197 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
198 |
+
|
199 |
+
# Initialize settings
|
200 |
+
settings = Settings()
|
201 |
+
|
202 |
+
# NEW: auto-cleanup on start-up option in Settings
|
203 |
+
if settings.get("auto_cleanup_on_startup", False):
|
204 |
+
print("--- Running Automatic Startup Cleanup ---")
|
205 |
+
|
206 |
+
# Import the processor instance
|
207 |
+
from modules.toolbox_app import tb_processor
|
208 |
+
|
209 |
+
# Call the single cleanup function and print its summary.
|
210 |
+
cleanup_summary = tb_processor.tb_clear_temporary_files()
|
211 |
+
print(f"{cleanup_summary}") # This cleaner print handles the multiline string well
|
212 |
+
|
213 |
+
print("--- Startup Cleanup Complete ---")
|
214 |
+
|
215 |
+
# --- Populate LoRA names AFTER settings are loaded ---
|
216 |
+
lora_folder_from_settings: str = settings.get("lora_dir", default_lora_folder) # Use setting, fallback to default
|
217 |
+
print(f"Scanning for LoRAs in: {lora_folder_from_settings}")
|
218 |
+
if os.path.isdir(lora_folder_from_settings):
|
219 |
+
try:
|
220 |
+
for root, _, files in os.walk(lora_folder_from_settings):
|
221 |
+
for file in files:
|
222 |
+
if file.endswith('.safetensors') or file.endswith('.pt'):
|
223 |
+
lora_relative_path = os.path.relpath(os.path.join(root, file), lora_folder_from_settings)
|
224 |
+
lora_name = str(PurePath(lora_relative_path).with_suffix(''))
|
225 |
+
lora_names.append(lora_name)
|
226 |
+
print(f"Found LoRAs: {lora_names}")
|
227 |
+
# Temp solution for only 1 lora
|
228 |
+
if len(lora_names) == 1:
|
229 |
+
lora_names.append(DUMMY_LORA_NAME)
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Error scanning LoRA directory '{lora_folder_from_settings}': {e}")
|
232 |
+
else:
|
233 |
+
print(f"LoRA directory not found: {lora_folder_from_settings}")
|
234 |
+
# --- End LoRA population ---
|
235 |
+
|
236 |
+
|
237 |
+
# Create job queue
|
238 |
+
job_queue = VideoJobQueue()
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
# Function to load a LoRA file
|
243 |
+
def load_lora_file(lora_file: str | PurePath):
|
244 |
+
if not lora_file:
|
245 |
+
return None, "No file selected"
|
246 |
+
|
247 |
+
try:
|
248 |
+
# Get the filename from the path
|
249 |
+
lora_path = PurePath(lora_file)
|
250 |
+
lora_name = lora_path.name
|
251 |
+
|
252 |
+
# Copy the file to the lora directory
|
253 |
+
lora_dest = PurePath(lora_dir, lora_path)
|
254 |
+
import shutil
|
255 |
+
shutil.copy(lora_file, lora_dest)
|
256 |
+
|
257 |
+
# Load the LoRA
|
258 |
+
global current_generator, lora_names
|
259 |
+
if current_generator is None:
|
260 |
+
return None, "Error: No model loaded to apply LoRA to. Generate something first."
|
261 |
+
|
262 |
+
# Unload any existing LoRAs first
|
263 |
+
current_generator.unload_loras()
|
264 |
+
|
265 |
+
# Load the single LoRA
|
266 |
+
selected_loras = [lora_path.stem]
|
267 |
+
current_generator.load_loras(selected_loras, lora_dir, selected_loras)
|
268 |
+
|
269 |
+
# Add to lora_names if not already there
|
270 |
+
lora_base_name = lora_path.stem
|
271 |
+
if lora_base_name not in lora_names:
|
272 |
+
lora_names.append(lora_base_name)
|
273 |
+
|
274 |
+
# Get the current device of the transformer
|
275 |
+
device = next(current_generator.transformer.parameters()).device
|
276 |
+
|
277 |
+
# Move all LoRA adapters to the same device as the base model
|
278 |
+
current_generator.move_lora_adapters_to_device(device)
|
279 |
+
|
280 |
+
print(f"Loaded LoRA: {lora_name} to {current_generator.get_model_name()} model")
|
281 |
+
|
282 |
+
return gr.update(choices=lora_names), f"Successfully loaded LoRA: {lora_name}"
|
283 |
+
except Exception as e:
|
284 |
+
print(f"Error loading LoRA: {e}")
|
285 |
+
return None, f"Error loading LoRA: {e}"
|
286 |
+
|
287 |
+
@torch.no_grad()
|
288 |
+
def get_cached_or_encode_prompt(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, target_device):
|
289 |
+
"""
|
290 |
+
Retrieves prompt embeddings from cache or encodes them if not found.
|
291 |
+
Stores encoded embeddings (on CPU) in the cache.
|
292 |
+
Returns embeddings moved to the target_device.
|
293 |
+
"""
|
294 |
+
if prompt in prompt_embedding_cache:
|
295 |
+
print(f"Cache hit for prompt: {prompt[:60]}...")
|
296 |
+
llama_vec_cpu, llama_mask_cpu, clip_l_pooler_cpu = prompt_embedding_cache[prompt]
|
297 |
+
# Move cached embeddings (from CPU) to the target device
|
298 |
+
llama_vec = llama_vec_cpu.to(target_device)
|
299 |
+
llama_attention_mask = llama_mask_cpu.to(target_device) if llama_mask_cpu is not None else None
|
300 |
+
clip_l_pooler = clip_l_pooler_cpu.to(target_device)
|
301 |
+
return llama_vec, llama_attention_mask, clip_l_pooler
|
302 |
+
else:
|
303 |
+
print(f"Cache miss for prompt: {prompt[:60]}...")
|
304 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(
|
305 |
+
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
306 |
+
)
|
307 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
308 |
+
# Store CPU copies in cache
|
309 |
+
prompt_embedding_cache[prompt] = (llama_vec.cpu(), llama_attention_mask.cpu() if llama_attention_mask is not None else None, clip_l_pooler.cpu())
|
310 |
+
# Return embeddings already on the target device (as encode_prompt_conds uses the model's device)
|
311 |
+
return llama_vec, llama_attention_mask, clip_l_pooler
|
312 |
+
|
313 |
+
# Set the worker function for the job queue - using the imported worker from modules/pipelines/worker.py
|
314 |
+
job_queue.set_worker_function(worker)
|
315 |
+
|
316 |
+
def get_duration(model_type,
|
317 |
+
input_image,
|
318 |
+
end_frame_image, # NEW
|
319 |
+
end_frame_strength, # NEW
|
320 |
+
prompt_text,
|
321 |
+
n_prompt,
|
322 |
+
seed,
|
323 |
+
total_second_length,
|
324 |
+
latent_window_size,
|
325 |
+
steps,
|
326 |
+
cfg,
|
327 |
+
gs,
|
328 |
+
rs,
|
329 |
+
use_teacache,
|
330 |
+
teacache_num_steps,
|
331 |
+
teacache_rel_l1_thresh,
|
332 |
+
use_magcache,
|
333 |
+
magcache_threshold,
|
334 |
+
magcache_max_consecutive_skips,
|
335 |
+
magcache_retention_ratio,
|
336 |
+
blend_sections,
|
337 |
+
latent_type,
|
338 |
+
clean_up_videos,
|
339 |
+
selected_loras,
|
340 |
+
resolutionW,
|
341 |
+
resolutionH,
|
342 |
+
input_image_path,
|
343 |
+
combine_with_source,
|
344 |
+
num_cleaned_frames,
|
345 |
+
*lora_args,
|
346 |
+
save_metadata_checked=True):
|
347 |
+
return total_second_length * 60
|
348 |
+
|
349 |
+
@spaces.GPU(duration=get_duration)
|
350 |
+
def process(
|
351 |
+
model_type,
|
352 |
+
input_image,
|
353 |
+
end_frame_image, # NEW
|
354 |
+
end_frame_strength, # NEW
|
355 |
+
prompt_text,
|
356 |
+
n_prompt,
|
357 |
+
seed,
|
358 |
+
total_second_length,
|
359 |
+
latent_window_size,
|
360 |
+
steps,
|
361 |
+
cfg,
|
362 |
+
gs,
|
363 |
+
rs,
|
364 |
+
use_teacache,
|
365 |
+
teacache_num_steps,
|
366 |
+
teacache_rel_l1_thresh,
|
367 |
+
use_magcache,
|
368 |
+
magcache_threshold,
|
369 |
+
magcache_max_consecutive_skips,
|
370 |
+
magcache_retention_ratio,
|
371 |
+
blend_sections,
|
372 |
+
latent_type,
|
373 |
+
clean_up_videos,
|
374 |
+
selected_loras,
|
375 |
+
resolutionW,
|
376 |
+
resolutionH,
|
377 |
+
input_image_path,
|
378 |
+
combine_with_source,
|
379 |
+
num_cleaned_frames,
|
380 |
+
*lora_args,
|
381 |
+
save_metadata_checked=True, # NEW: Parameter to control metadata saving
|
382 |
+
):
|
383 |
+
|
384 |
+
# Create a blank black image if no
|
385 |
+
# Create a default image based on the selected latent_type
|
386 |
+
has_input_image = True
|
387 |
+
if input_image is None:
|
388 |
+
has_input_image = False
|
389 |
+
default_height, default_width = resolutionH, resolutionW
|
390 |
+
if latent_type == "White":
|
391 |
+
# Create a white image
|
392 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
393 |
+
print("No input image provided. Using a blank white image.")
|
394 |
+
|
395 |
+
elif latent_type == "Noise":
|
396 |
+
# Create a noise image
|
397 |
+
input_image = np.random.randint(0, 256, (default_height, default_width, 3), dtype=np.uint8)
|
398 |
+
print("No input image provided. Using a random noise image.")
|
399 |
+
|
400 |
+
elif latent_type == "Green Screen":
|
401 |
+
# Create a green screen image with standard chroma key green (0, 177, 64)
|
402 |
+
input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
|
403 |
+
input_image[:, :, 1] = 177 # Green channel
|
404 |
+
input_image[:, :, 2] = 64 # Blue channel
|
405 |
+
# Red channel remains 0
|
406 |
+
print("No input image provided. Using a standard chroma key green screen.")
|
407 |
+
|
408 |
+
else: # Default to "Black" or any other value
|
409 |
+
# Create a black image
|
410 |
+
input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
|
411 |
+
print(f"No input image provided. Using a blank black image (latent_type: {latent_type}).")
|
412 |
+
|
413 |
+
|
414 |
+
# Handle input files - copy to input_files_dir to prevent them from being deleted by temp cleanup
|
415 |
+
input_files_dir = settings.get("input_files_dir")
|
416 |
+
os.makedirs(input_files_dir, exist_ok=True)
|
417 |
+
|
418 |
+
# Process input image (if it's a file path)
|
419 |
+
input_image_path = None
|
420 |
+
if isinstance(input_image, str) and os.path.exists(input_image):
|
421 |
+
# It's a file path, copy it to input_files_dir
|
422 |
+
filename = os.path.basename(input_image)
|
423 |
+
input_image_path = os.path.join(input_files_dir, f"{generate_timestamp()}_{filename}")
|
424 |
+
try:
|
425 |
+
shutil.copy2(input_image, input_image_path)
|
426 |
+
print(f"Copied input image to {input_image_path}")
|
427 |
+
# For Video model, we'll use the path
|
428 |
+
if model_type == "Video":
|
429 |
+
input_image = input_image_path
|
430 |
+
except Exception as e:
|
431 |
+
print(f"Error copying input image: {e}")
|
432 |
+
|
433 |
+
# Process end frame image (if it's a file path)
|
434 |
+
end_frame_image_path = None
|
435 |
+
if isinstance(end_frame_image, str) and os.path.exists(end_frame_image):
|
436 |
+
# It's a file path, copy it to input_files_dir
|
437 |
+
filename = os.path.basename(end_frame_image)
|
438 |
+
end_frame_image_path = os.path.join(input_files_dir, f"{generate_timestamp()}_{filename}")
|
439 |
+
try:
|
440 |
+
shutil.copy2(end_frame_image, end_frame_image_path)
|
441 |
+
print(f"Copied end frame image to {end_frame_image_path}")
|
442 |
+
except Exception as e:
|
443 |
+
print(f"Error copying end frame image: {e}")
|
444 |
+
|
445 |
+
# Extract lora_loaded_names from lora_args
|
446 |
+
lora_loaded_names = lora_args[0] if lora_args and len(lora_args) > 0 else []
|
447 |
+
lora_values = lora_args[1:] if lora_args and len(lora_args) > 1 else []
|
448 |
+
|
449 |
+
# Create job parameters
|
450 |
+
job_params = {
|
451 |
+
'model_type': model_type,
|
452 |
+
'input_image': input_image.copy() if hasattr(input_image, 'copy') else input_image, # Handle both image arrays and video paths
|
453 |
+
'end_frame_image': end_frame_image.copy() if end_frame_image is not None else None,
|
454 |
+
'end_frame_strength': end_frame_strength,
|
455 |
+
'prompt_text': prompt_text,
|
456 |
+
'n_prompt': n_prompt,
|
457 |
+
'seed': seed,
|
458 |
+
'total_second_length': total_second_length,
|
459 |
+
'latent_window_size': latent_window_size,
|
460 |
+
'latent_type': latent_type,
|
461 |
+
'steps': steps,
|
462 |
+
'cfg': cfg,
|
463 |
+
'gs': gs,
|
464 |
+
'rs': rs,
|
465 |
+
'blend_sections': blend_sections,
|
466 |
+
'use_teacache': use_teacache,
|
467 |
+
'teacache_num_steps': teacache_num_steps,
|
468 |
+
'teacache_rel_l1_thresh': teacache_rel_l1_thresh,
|
469 |
+
'use_magcache': use_magcache,
|
470 |
+
'magcache_threshold': magcache_threshold,
|
471 |
+
'magcache_max_consecutive_skips': magcache_max_consecutive_skips,
|
472 |
+
'magcache_retention_ratio': magcache_retention_ratio,
|
473 |
+
'selected_loras': selected_loras,
|
474 |
+
'has_input_image': has_input_image,
|
475 |
+
'output_dir': settings.get("output_dir"),
|
476 |
+
'metadata_dir': settings.get("metadata_dir"),
|
477 |
+
'input_files_dir': input_files_dir, # Add input_files_dir to job parameters
|
478 |
+
'input_image_path': input_image_path, # Add the path to the copied input image
|
479 |
+
'end_frame_image_path': end_frame_image_path, # Add the path to the copied end frame image
|
480 |
+
'resolutionW': resolutionW, # Add resolution parameter
|
481 |
+
'resolutionH': resolutionH,
|
482 |
+
'lora_loaded_names': lora_loaded_names,
|
483 |
+
'combine_with_source': combine_with_source, # Add combine_with_source parameter
|
484 |
+
'num_cleaned_frames': num_cleaned_frames,
|
485 |
+
'save_metadata_checked': save_metadata_checked, # NEW: Add save_metadata_checked parameter
|
486 |
+
}
|
487 |
+
|
488 |
+
# Print teacache parameters for debugging
|
489 |
+
print(f"Teacache parameters: use_teacache={use_teacache}, teacache_num_steps={teacache_num_steps}, teacache_rel_l1_thresh={teacache_rel_l1_thresh}")
|
490 |
+
|
491 |
+
# Add LoRA values if provided - extract them from the tuple
|
492 |
+
if lora_values:
|
493 |
+
# Convert tuple to list
|
494 |
+
lora_values_list = list(lora_values)
|
495 |
+
job_params['lora_values'] = lora_values_list
|
496 |
+
|
497 |
+
# Add job to queue
|
498 |
+
job_id = job_queue.add_job(job_params)
|
499 |
+
|
500 |
+
# Set the generation_type attribute on the job object directly
|
501 |
+
job = job_queue.get_job(job_id)
|
502 |
+
if job:
|
503 |
+
job.generation_type = model_type # Set generation_type to model_type for display in queue
|
504 |
+
print(f"Added job {job_id} to queue")
|
505 |
+
|
506 |
+
queue_status = update_queue_status()
|
507 |
+
# Return immediately after adding to queue
|
508 |
+
# Return separate updates for start_button and end_button to prevent cross-contamination
|
509 |
+
return None, job_id, None, '', f'Job added to queue. Job ID: {job_id}', gr.update(value="π Add to Queue", interactive=True), gr.update(value="β Cancel Current Job", interactive=True)
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
def end_process():
|
514 |
+
"""Cancel the current running job and update the queue status"""
|
515 |
+
print("Cancelling current job")
|
516 |
+
with job_queue.lock:
|
517 |
+
if job_queue.current_job:
|
518 |
+
job_id = job_queue.current_job.id
|
519 |
+
print(f"Cancelling job {job_id}")
|
520 |
+
|
521 |
+
# Send the end signal to the job's stream
|
522 |
+
if job_queue.current_job.stream:
|
523 |
+
job_queue.current_job.stream.input_queue.push('end')
|
524 |
+
|
525 |
+
# Mark the job as cancelled
|
526 |
+
job_queue.current_job.status = JobStatus.CANCELLED
|
527 |
+
job_queue.current_job.completed_at = time.time() # Set completion time
|
528 |
+
|
529 |
+
# Force an update to the queue status
|
530 |
+
return update_queue_status()
|
531 |
+
|
532 |
+
|
533 |
+
def update_queue_status():
|
534 |
+
"""Update queue status and refresh job positions"""
|
535 |
+
jobs = job_queue.get_all_jobs()
|
536 |
+
for job in jobs:
|
537 |
+
if job.status == JobStatus.PENDING:
|
538 |
+
job.queue_position = job_queue.get_queue_position(job.id)
|
539 |
+
|
540 |
+
# Make sure to update current running job info
|
541 |
+
if job_queue.current_job:
|
542 |
+
# Make sure the running job is showing status = RUNNING
|
543 |
+
job_queue.current_job.status = JobStatus.RUNNING
|
544 |
+
|
545 |
+
# Update the toolbar stats
|
546 |
+
pending_count = 0
|
547 |
+
running_count = 0
|
548 |
+
completed_count = 0
|
549 |
+
|
550 |
+
for job in jobs:
|
551 |
+
if hasattr(job, 'status'):
|
552 |
+
status = str(job.status)
|
553 |
+
if status == "JobStatus.PENDING":
|
554 |
+
pending_count += 1
|
555 |
+
elif status == "JobStatus.RUNNING":
|
556 |
+
running_count += 1
|
557 |
+
elif status == "JobStatus.COMPLETED":
|
558 |
+
completed_count += 1
|
559 |
+
|
560 |
+
return format_queue_status(jobs)
|
561 |
+
|
562 |
+
|
563 |
+
def monitor_job(job_id=None):
|
564 |
+
"""
|
565 |
+
Monitor a specific job and update the UI with the latest video segment as soon as it's available.
|
566 |
+
If no job_id is provided, check if there's a current job in the queue.
|
567 |
+
ALWAYS shows the current running job, regardless of the job_id provided.
|
568 |
+
"""
|
569 |
+
last_video = None # Track the last video file shown
|
570 |
+
last_job_status = None # Track the previous job status to detect status changes
|
571 |
+
last_progress_update_time = time.time() # Track when we last updated the progress
|
572 |
+
last_preview = None # Track the last preview image shown
|
573 |
+
force_update = True # Force an update on first iteration
|
574 |
+
|
575 |
+
# Flag to indicate we're waiting for a job transition
|
576 |
+
waiting_for_transition = False
|
577 |
+
transition_start_time = None
|
578 |
+
max_transition_wait = 5.0 # Maximum time to wait for transition in seconds
|
579 |
+
|
580 |
+
def get_preview_updates(preview_value):
|
581 |
+
"""Create preview updates that respect the latents_display_top setting"""
|
582 |
+
display_top = settings.get("latents_display_top", False)
|
583 |
+
if display_top:
|
584 |
+
# Top display enabled: update top preview with value, don't update right preview
|
585 |
+
return gr.update(), preview_value if preview_value is not None else gr.update()
|
586 |
+
else:
|
587 |
+
# Right column display: update right preview with value, don't update top preview
|
588 |
+
return preview_value if preview_value is not None else gr.update(), gr.update()
|
589 |
+
|
590 |
+
while True:
|
591 |
+
# ALWAYS check if there's a current running job that's different from our tracked job_id
|
592 |
+
with job_queue.lock:
|
593 |
+
current_job = job_queue.current_job
|
594 |
+
if current_job and current_job.id != job_id and current_job.status == JobStatus.RUNNING:
|
595 |
+
# Always switch to the current running job
|
596 |
+
job_id = current_job.id
|
597 |
+
waiting_for_transition = False
|
598 |
+
force_update = True
|
599 |
+
# Yield a temporary update to show we're switching jobs
|
600 |
+
right_preview, top_preview = get_preview_updates(None)
|
601 |
+
yield last_video, right_preview, top_preview, '', 'Switching to current job...', gr.update(interactive=True), gr.update(value="β Cancel Current Job", visible=True)
|
602 |
+
continue
|
603 |
+
|
604 |
+
# Check if we're waiting for a job transition
|
605 |
+
if waiting_for_transition:
|
606 |
+
current_time = time.time()
|
607 |
+
# If we've been waiting too long, stop waiting
|
608 |
+
if current_time - transition_start_time > max_transition_wait:
|
609 |
+
waiting_for_transition = False
|
610 |
+
|
611 |
+
# Check one more time for a current job
|
612 |
+
with job_queue.lock:
|
613 |
+
current_job = job_queue.current_job
|
614 |
+
if current_job and current_job.status == JobStatus.RUNNING:
|
615 |
+
# Switch to whatever job is currently running
|
616 |
+
job_id = current_job.id
|
617 |
+
force_update = True
|
618 |
+
right_preview, top_preview = get_preview_updates(None)
|
619 |
+
yield last_video, right_preview, top_preview, '', 'Switching to current job...', gr.update(interactive=True), gr.update(value="β Cancel Current Job", visible=True)
|
620 |
+
continue
|
621 |
+
else:
|
622 |
+
# If still waiting, sleep briefly and continue
|
623 |
+
time.sleep(0.1)
|
624 |
+
continue
|
625 |
+
|
626 |
+
job = job_queue.get_job(job_id)
|
627 |
+
if not job:
|
628 |
+
# Correctly yield 7 items for the startup/no-job case
|
629 |
+
# This ensures the status text goes to the right component and the buttons are set correctly.
|
630 |
+
yield None, None, None, 'No job ID provided', '', gr.update(value="π Add to Queue", interactive=True, visible=True), gr.update(interactive=False, visible=False)
|
631 |
+
return
|
632 |
+
|
633 |
+
# If a new video file is available, yield it immediately
|
634 |
+
if job.result and job.result != last_video:
|
635 |
+
last_video = job.result
|
636 |
+
# You can also update preview/progress here if desired
|
637 |
+
right_preview, top_preview = get_preview_updates(None)
|
638 |
+
yield last_video, right_preview, top_preview, '', '', gr.update(interactive=True), gr.update(interactive=True)
|
639 |
+
|
640 |
+
# Handle job status and progress
|
641 |
+
if job.status == JobStatus.PENDING:
|
642 |
+
position = job_queue.get_queue_position(job_id)
|
643 |
+
right_preview, top_preview = get_preview_updates(None)
|
644 |
+
yield last_video, right_preview, top_preview, '', f'Waiting in queue. Position: {position}', gr.update(interactive=True), gr.update(interactive=True)
|
645 |
+
|
646 |
+
elif job.status == JobStatus.RUNNING:
|
647 |
+
# Only reset the cancel button when a job transitions from another state to RUNNING
|
648 |
+
# This ensures we don't reset the button text during cancellation
|
649 |
+
if last_job_status != JobStatus.RUNNING:
|
650 |
+
# Check if the button text is already "Cancelling..." - if so, don't change it
|
651 |
+
# This prevents the button from changing back to "Cancel Current Job" during cancellation
|
652 |
+
button_update = gr.update(interactive=True, value="β Cancel Current Job", visible=True)
|
653 |
+
else:
|
654 |
+
# Keep current text and state - important to not override "Cancelling..." text
|
655 |
+
button_update = gr.update(interactive=True, visible=True)
|
656 |
+
|
657 |
+
# Check if we have progress data and if it's time to update
|
658 |
+
current_time = time.time()
|
659 |
+
update_needed = force_update or (current_time - last_progress_update_time > 0.05) # More frequent updates
|
660 |
+
|
661 |
+
# Always check for progress data, even if we don't have a preview yet
|
662 |
+
if job.progress_data and update_needed:
|
663 |
+
preview = job.progress_data.get('preview')
|
664 |
+
desc = job.progress_data.get('desc', '')
|
665 |
+
html = job.progress_data.get('html', '')
|
666 |
+
|
667 |
+
# Only update the preview if it has changed or we're forcing an update
|
668 |
+
# Ensure all components get an update
|
669 |
+
current_preview_value = job.progress_data.get('preview') if job.progress_data else None
|
670 |
+
current_desc_value = job.progress_data.get('desc', 'Processing...') if job.progress_data else 'Processing...'
|
671 |
+
current_html_value = job.progress_data.get('html', make_progress_bar_html(0, 'Processing...')) if job.progress_data else make_progress_bar_html(0, 'Processing...')
|
672 |
+
|
673 |
+
if current_preview_value is not None and (current_preview_value is not last_preview or force_update):
|
674 |
+
last_preview = current_preview_value
|
675 |
+
# Always update if force_update is true, or if it's time for a periodic update
|
676 |
+
if force_update or update_needed:
|
677 |
+
last_progress_update_time = current_time
|
678 |
+
force_update = False
|
679 |
+
right_preview, top_preview = get_preview_updates(last_preview)
|
680 |
+
yield job.result, right_preview, top_preview, current_desc_value, current_html_value, gr.update(interactive=True), button_update
|
681 |
+
|
682 |
+
# Fallback for periodic update if no new progress data but job is still running
|
683 |
+
elif current_time - last_progress_update_time > 0.5: # More frequent fallback update
|
684 |
+
last_progress_update_time = current_time
|
685 |
+
force_update = False # Reset force_update after a yield
|
686 |
+
current_desc_value = job.progress_data.get('desc', 'Processing...') if job.progress_data else 'Processing...'
|
687 |
+
current_html_value = job.progress_data.get('html', make_progress_bar_html(0, 'Processing...')) if job.progress_data else make_progress_bar_html(0, 'Processing...')
|
688 |
+
right_preview, top_preview = get_preview_updates(last_preview)
|
689 |
+
yield job.result, right_preview, top_preview, current_desc_value, current_html_value, gr.update(interactive=True), button_update
|
690 |
+
|
691 |
+
elif job.status == JobStatus.COMPLETED:
|
692 |
+
# Show the final video and reset the button text
|
693 |
+
right_preview, top_preview = get_preview_updates(last_preview)
|
694 |
+
yield job.result, right_preview, top_preview, 'Completed', make_progress_bar_html(100, 'Completed'), gr.update(value="π Add to Queue"), gr.update(interactive=True, value="β Cancel Current Job", visible=False)
|
695 |
+
break
|
696 |
+
|
697 |
+
elif job.status == JobStatus.FAILED:
|
698 |
+
# Show error and reset the button text
|
699 |
+
right_preview, top_preview = get_preview_updates(last_preview)
|
700 |
+
yield job.result, right_preview, top_preview, f'Error: {job.error}', make_progress_bar_html(0, 'Failed'), gr.update(value="π Add to Queue"), gr.update(interactive=True, value="β Cancel Current Job", visible=False)
|
701 |
+
break
|
702 |
+
|
703 |
+
elif job.status == JobStatus.CANCELLED:
|
704 |
+
# Show cancelled message and reset the button text
|
705 |
+
right_preview, top_preview = get_preview_updates(last_preview)
|
706 |
+
yield job.result, right_preview, top_preview, 'Job cancelled', make_progress_bar_html(0, 'Cancelled'), gr.update(interactive=True), gr.update(interactive=True, value="β Cancel Current Job", visible=False)
|
707 |
+
break
|
708 |
+
|
709 |
+
# Update last_job_status for the next iteration
|
710 |
+
last_job_status = job.status
|
711 |
+
|
712 |
+
# Wait a bit before checking again
|
713 |
+
time.sleep(0.05) # Reduced wait time for more responsive updates
|
714 |
+
|
715 |
+
|
716 |
+
# Set Gradio temporary directory from settings
|
717 |
+
os.environ["GRADIO_TEMP_DIR"] = settings.get("gradio_temp_dir")
|
718 |
+
|
719 |
+
# Create the interface
|
720 |
+
interface = create_interface(
|
721 |
+
process_fn=process,
|
722 |
+
monitor_fn=monitor_job,
|
723 |
+
end_process_fn=end_process,
|
724 |
+
update_queue_status_fn=update_queue_status,
|
725 |
+
load_lora_file_fn=load_lora_file,
|
726 |
+
job_queue=job_queue,
|
727 |
+
settings=settings,
|
728 |
+
lora_names=lora_names # Explicitly pass the found LoRA names
|
729 |
+
)
|
730 |
+
|
731 |
+
# Launch the interface
|
732 |
+
|
733 |
+
interface.launch(share=True)
|