diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..2b8113889521e615669f771ab9fc45e6ffb7a03c 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+assets/audio/2.WAV filter=lfs diff=lfs merge=lfs -text
+assets/audio/3.WAV filter=lfs diff=lfs merge=lfs -text
+assets/audio/4.WAV filter=lfs diff=lfs merge=lfs -text
+assets/image/1.png filter=lfs diff=lfs merge=lfs -text
+assets/image/2.png filter=lfs diff=lfs merge=lfs -text
+assets/image/3.png filter=lfs diff=lfs merge=lfs -text
+assets/image/4.png filter=lfs diff=lfs merge=lfs -text
+assets/image/src1.png filter=lfs diff=lfs merge=lfs -text
+assets/image/src2.png filter=lfs diff=lfs merge=lfs -text
+assets/image/src3.png filter=lfs diff=lfs merge=lfs -text
+assets/image/src4.png filter=lfs diff=lfs merge=lfs -text
+assets/material/demo.png filter=lfs diff=lfs merge=lfs -text
+assets/material/logo.png filter=lfs diff=lfs merge=lfs -text
+assets/material/method.png filter=lfs diff=lfs merge=lfs -text
+assets/material/teaser.png filter=lfs diff=lfs merge=lfs -text
diff --git a/assets/audio/2.WAV b/assets/audio/2.WAV
new file mode 100644
index 0000000000000000000000000000000000000000..016714bab6bd8208d2714ece3f0007d09034a277
--- /dev/null
+++ b/assets/audio/2.WAV
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:388d768354bb20f3aaa8327ef3391737c8150d3351fdaa04aa98b57caddc5dfb
+size 3862572
diff --git a/assets/audio/3.WAV b/assets/audio/3.WAV
new file mode 100644
index 0000000000000000000000000000000000000000..4025c9ed082d32834dfb2bb5d5db0c1caad9fcf1
--- /dev/null
+++ b/assets/audio/3.WAV
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:854f2df163f4fc7bd69f09e8ca31758dedf8a56b191083d5fd4a5b25259b5fe2
+size 1921068
diff --git a/assets/audio/4.WAV b/assets/audio/4.WAV
new file mode 100644
index 0000000000000000000000000000000000000000..0d1fe5987a5168b32ea51fb86a6ccb591a92fc29
--- /dev/null
+++ b/assets/audio/4.WAV
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:81d992d96a96829f27aef2d99fa63614b692cc9ed2cbac61e23e9a1dcc402b3a
+size 3809324
diff --git a/assets/image/1.png b/assets/image/1.png
new file mode 100644
index 0000000000000000000000000000000000000000..3934b7e4e6c54fd6688b61dac35071fd4864607d
--- /dev/null
+++ b/assets/image/1.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d9bb2f06d84af5ca9347d684554f9bd8edb118749457b37bff6026a1b429843d
+size 7359183
diff --git a/assets/image/2.png b/assets/image/2.png
new file mode 100644
index 0000000000000000000000000000000000000000..3c1b7a2ca199c3f4780d2dacad9891d70a8b8f22
--- /dev/null
+++ b/assets/image/2.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:97fdb135022e2d82366b5891b69d27b14fb183941c52cc6903acb5b6e74e89eb
+size 5928730
diff --git a/assets/image/3.png b/assets/image/3.png
new file mode 100644
index 0000000000000000000000000000000000000000..c2f5382c020e468600ac72aaabf491364b921f24
--- /dev/null
+++ b/assets/image/3.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6616f4dde7435a504f11af1b8919124ae48a592858fdc1ab0ccacaa265f2271d
+size 7343992
diff --git a/assets/image/4.png b/assets/image/4.png
new file mode 100644
index 0000000000000000000000000000000000000000..d312b2ac07140a285def8590598c3e7e78ccab1b
--- /dev/null
+++ b/assets/image/4.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:931921def1c1c9336d1330554c1fa39b6090431dd720ccaa279e684b6253a800
+size 5276839
diff --git a/assets/image/src1.png b/assets/image/src1.png
new file mode 100644
index 0000000000000000000000000000000000000000..ff2320b33af8e261fa9d46734ee293303ad5c036
--- /dev/null
+++ b/assets/image/src1.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2c1ff64938aaa0950e33132e43cdc1e3e3a1cedc1b6ecdb33a067cb1971c4189
+size 10159438
diff --git a/assets/image/src2.png b/assets/image/src2.png
new file mode 100644
index 0000000000000000000000000000000000000000..dbb04996d099b2e617822845b8e3385a1454f7e4
--- /dev/null
+++ b/assets/image/src2.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a4b4bb9edc4d01cec463d85d97cd1c9319e34d6f5d10e8d11d6c33a89f418b66
+size 9553059
diff --git a/assets/image/src3.png b/assets/image/src3.png
new file mode 100644
index 0000000000000000000000000000000000000000..0f76d382f005034e474d28e2baad3fc799700bda
--- /dev/null
+++ b/assets/image/src3.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b51bed13f3fe69f5b98b95faa1e570a3600999bcc2479ef6080ac80f53255855
+size 9991903
diff --git a/assets/image/src4.png b/assets/image/src4.png
new file mode 100644
index 0000000000000000000000000000000000000000..7d45025247e5a193469494d6940da5149cfda694
--- /dev/null
+++ b/assets/image/src4.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:25b8bbf44d24bd25cb37495816cf1aa9cfcc9e32935dad074823bfdc590d0420
+size 9601751
diff --git a/assets/material/demo.png b/assets/material/demo.png
new file mode 100644
index 0000000000000000000000000000000000000000..11f6a4daaaac8733505d0e147c18d79bc374f94f
--- /dev/null
+++ b/assets/material/demo.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:32a0b751c12f40babc96f208cdfa3932aca74044c7689770b849e461e0b6aa1a
+size 7675020
diff --git a/assets/material/logo.png b/assets/material/logo.png
new file mode 100644
index 0000000000000000000000000000000000000000..803e7e155b28c1a3dd4330d95a879c94aca5bca3
--- /dev/null
+++ b/assets/material/logo.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2318f6ce82b18f91586050672e45cc637db61a33885de672b1b0d26e31b5de94
+size 161891
diff --git a/assets/material/method.png b/assets/material/method.png
new file mode 100644
index 0000000000000000000000000000000000000000..35718a49263e5fe80c8fbdc26ea327a6090464c0
--- /dev/null
+++ b/assets/material/method.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:40ebe93eec368255ffaf58ad88f7aa5cdb605fd538f9272a3257803f9e86c338
+size 4942692
diff --git a/assets/material/teaser.png b/assets/material/teaser.png
new file mode 100644
index 0000000000000000000000000000000000000000..76a551c02eb23adf29e7fc6c6801173d351ad45b
--- /dev/null
+++ b/assets/material/teaser.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8bbd88f126ad3a80ed613d90bb93e7a6bda346245df4aecd75b884ae00607ac4
+size 5434996
diff --git a/assets/test.csv b/assets/test.csv
new file mode 100644
index 0000000000000000000000000000000000000000..a58c694894a0bcf4a63144d62acc410994359462
--- /dev/null
+++ b/assets/test.csv
@@ -0,0 +1,25 @@
+videoid,image,audio,prompt,fps
+8,assets/image/1.png,assets/audio/2.WAV,A person sits cross-legged by a campfire in a forested area.,25
+9,assets/image/2.png,assets/audio/2.WAV,"A person with long blonde hair wearing a green jacket, standing in a forested area during twilight.",25
+10,assets/image/3.png,assets/audio/2.WAV,A person playing guitar by a campfire in a forest.,25
+11,assets/image/4.png,assets/audio/2.WAV,"A person wearing a green jacket stands in a forested area, with sunlight filtering through the trees.",25
+12,assets/image/src1.png,assets/audio/2.WAV,A person sits cross-legged by a campfire in a forest at dusk.,25
+13,assets/image/src2.png,assets/audio/2.WAV,A person in a green jacket stands in a forest at dusk.,25
+14,assets/image/src3.png,assets/audio/2.WAV,A person playing guitar by a campfire in a forest.,25
+15,assets/image/src4.png,assets/audio/2.WAV,"A person in a green jacket stands in a forest, backlit by sunlight.",25
+16,assets/image/1.png,assets/audio/3.WAV,A person sits cross-legged by a campfire in a forested area.,25
+17,assets/image/2.png,assets/audio/3.WAV,"A person with long blonde hair wearing a green jacket, standing in a forested area during twilight.",25
+18,assets/image/3.png,assets/audio/3.WAV,A person playing guitar by a campfire in a forest.,25
+19,assets/image/4.png,assets/audio/3.WAV,"A person wearing a green jacket stands in a forested area, with sunlight filtering through the trees.",25
+20,assets/image/src1.png,assets/audio/3.WAV,A person sits cross-legged by a campfire in a forest at dusk.,25
+21,assets/image/src2.png,assets/audio/3.WAV,A person in a green jacket stands in a forest at dusk.,25
+22,assets/image/src3.png,assets/audio/3.WAV,A person playing guitar by a campfire in a forest.,25
+23,assets/image/src4.png,assets/audio/3.WAV,"A person in a green jacket stands in a forest, backlit by sunlight.",25
+24,assets/image/1.png,assets/audio/4.WAV,A person sits cross-legged by a campfire in a forested area.,25
+25,assets/image/2.png,assets/audio/4.WAV,"A person with long blonde hair wearing a green jacket, standing in a forested area during twilight.",25
+26,assets/image/3.png,assets/audio/4.WAV,A person playing guitar by a campfire in a forest.,25
+27,assets/image/4.png,assets/audio/4.WAV,"A person wearing a green jacket stands in a forested area, with sunlight filtering through the trees.",25
+28,assets/image/src1.png,assets/audio/4.WAV,A person sits cross-legged by a campfire in a forest at dusk.,25
+29,assets/image/src2.png,assets/audio/4.WAV,A person in a green jacket stands in a forest at dusk.,25
+30,assets/image/src3.png,assets/audio/4.WAV,A person playing guitar by a campfire in a forest.,25
+31,assets/image/src4.png,assets/audio/4.WAV,"A person in a green jacket stands in a forest, backlit by sunlight.",25
diff --git a/hymm_gradio/flask_audio.py b/hymm_gradio/flask_audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..24ecc31cf3c6643b3d05146485c5c2dd1c95e976
--- /dev/null
+++ b/hymm_gradio/flask_audio.py
@@ -0,0 +1,268 @@
+import os
+import numpy as np
+import torch
+import warnings
+import threading
+import traceback
+import uvicorn
+from fastapi import FastAPI, Body
+from pathlib import Path
+from datetime import datetime
+import torch.distributed as dist
+from hymm_gradio.tool_for_end2end import *
+from hymm_sp.config import parse_args
+from hymm_sp.sample_inference_audio import HunyuanVideoSampler
+
+from hymm_sp.modules.parallel_states import (
+ initialize_distributed,
+ nccl_info,
+)
+
+from transformers import WhisperModel
+from transformers import AutoFeatureExtractor
+from hymm_sp.data_kits.face_align import AlignImage
+
+
+warnings.filterwarnings("ignore")
+MODEL_OUTPUT_PATH = os.environ.get('MODEL_BASE')
+app = FastAPI()
+rlock = threading.RLock()
+
+
+
+@app.api_route('/predict2', methods=['GET', 'POST'])
+def predict(data=Body(...)):
+ is_acquire = False
+ error_info = ""
+ try:
+ is_acquire = rlock.acquire(blocking=False)
+ if is_acquire:
+ res = predict_wrap(data)
+ return res
+ except Exception as e:
+ error_info = traceback.format_exc()
+ print(error_info)
+ finally:
+ if is_acquire:
+ rlock.release()
+ return {"errCode": -1, "info": "broken"}
+
+def predict_wrap(input_dict={}):
+ if nccl_info.sp_size > 1:
+ device = torch.device(f"cuda:{torch.distributed.get_rank()}")
+ rank = local_rank = torch.distributed.get_rank()
+ print(f"sp_size={nccl_info.sp_size}, rank {rank} local_rank {local_rank}")
+ try:
+ print(f"----- rank = {rank}")
+ if rank == 0:
+ input_dict = process_input_dict(input_dict)
+
+ print('------- start to predict -------')
+ # Parse input arguments
+ image_path = input_dict["image_path"]
+ driving_audio_path = input_dict["audio_path"]
+
+ prompt = input_dict["prompt"]
+
+ save_fps = input_dict.get("save_fps", 25)
+
+
+ ret_dict = None
+ if image_path is None or driving_audio_path is None:
+ ret_dict = {
+ "errCode": -3,
+ "content": [
+ {
+ "buffer": None
+ },
+ ],
+ "info": "input content is not valid",
+ }
+
+ print(f"errCode: -3, input content is not valid!")
+ return ret_dict
+
+ # Preprocess input batch
+ torch.cuda.synchronize()
+
+ a = datetime.now()
+
+ try:
+ model_kwargs_tmp = data_preprocess_server(
+ args, image_path, driving_audio_path, prompt, feature_extractor
+ )
+ except:
+ ret_dict = {
+ "errCode": -2,
+ "content": [
+ {
+ "buffer": None
+ },
+ ],
+ "info": "failed to preprocess input data"
+ }
+ print(f"errCode: -2, preprocess failed!")
+ return ret_dict
+
+ text_prompt = model_kwargs_tmp["text_prompt"]
+ audio_path = model_kwargs_tmp["audio_path"]
+ image_path = model_kwargs_tmp["image_path"]
+ fps = model_kwargs_tmp["fps"]
+ audio_prompts = model_kwargs_tmp["audio_prompts"]
+ audio_len = model_kwargs_tmp["audio_len"]
+ motion_bucket_id_exps = model_kwargs_tmp["motion_bucket_id_exps"]
+ motion_bucket_id_heads = model_kwargs_tmp["motion_bucket_id_heads"]
+ pixel_value_ref = model_kwargs_tmp["pixel_value_ref"]
+ pixel_value_ref_llava = model_kwargs_tmp["pixel_value_ref_llava"]
+
+
+
+ torch.cuda.synchronize()
+ b = datetime.now()
+ preprocess_time = (b - a).total_seconds()
+ print("="*100)
+ print("preprocess time :", preprocess_time)
+ print("="*100)
+
+ else:
+ text_prompt = None
+ audio_path = None
+ image_path = None
+ fps = None
+ audio_prompts = None
+ audio_len = None
+ motion_bucket_id_exps = None
+ motion_bucket_id_heads = None
+ pixel_value_ref = None
+ pixel_value_ref_llava = None
+
+ except:
+ traceback.print_exc()
+ if rank == 0:
+ ret_dict = {
+ "errCode": -1, # Failed to generate video
+ "content":[
+ {
+ "buffer": None
+ }
+ ],
+ "info": "failed to preprocess",
+ }
+ return ret_dict
+
+ try:
+ broadcast_params = [
+ text_prompt,
+ audio_path,
+ image_path,
+ fps,
+ audio_prompts,
+ audio_len,
+ motion_bucket_id_exps,
+ motion_bucket_id_heads,
+ pixel_value_ref,
+ pixel_value_ref_llava,
+ ]
+ dist.broadcast_object_list(broadcast_params, src=0)
+ outputs = generate_image_parallel(*broadcast_params)
+
+ if rank == 0:
+ samples = outputs["samples"]
+ sample = samples[0].unsqueeze(0)
+
+ sample = sample[:, :, :audio_len[0]]
+
+ video = sample[0].permute(1, 2, 3, 0).clamp(0, 1).numpy()
+ video = (video * 255.).astype(np.uint8)
+
+ output_dict = {
+ "err_code": 0,
+ "err_msg": "succeed",
+ "video": video,
+ "audio": input_dict.get("audio_path", None),
+ "save_fps": save_fps,
+ }
+
+ ret_dict = process_output_dict(output_dict)
+ return ret_dict
+
+ except:
+ traceback.print_exc()
+ if rank == 0:
+ ret_dict = {
+ "errCode": -1, # Failed to generate video
+ "content":[
+ {
+ "buffer": None
+ }
+ ],
+ "info": "failed to generate video",
+ }
+ return ret_dict
+
+ return None
+
+def generate_image_parallel(text_prompt,
+ audio_path,
+ image_path,
+ fps,
+ audio_prompts,
+ audio_len,
+ motion_bucket_id_exps,
+ motion_bucket_id_heads,
+ pixel_value_ref,
+ pixel_value_ref_llava
+ ):
+ if nccl_info.sp_size > 1:
+ device = torch.device(f"cuda:{torch.distributed.get_rank()}")
+
+ batch = {
+ "text_prompt": text_prompt,
+ "audio_path": audio_path,
+ "image_path": image_path,
+ "fps": fps,
+ "audio_prompts": audio_prompts,
+ "audio_len": audio_len,
+ "motion_bucket_id_exps": motion_bucket_id_exps,
+ "motion_bucket_id_heads": motion_bucket_id_heads,
+ "pixel_value_ref": pixel_value_ref,
+ "pixel_value_ref_llava": pixel_value_ref_llava
+ }
+
+ samples = hunyuan_sampler.predict(args, batch, wav2vec, feature_extractor, align_instance)
+ return samples
+
+def worker_loop():
+ while True:
+ predict_wrap()
+
+
+if __name__ == "__main__":
+ audio_args = parse_args()
+ initialize_distributed(audio_args.seed)
+ hunyuan_sampler = HunyuanVideoSampler.from_pretrained(
+ audio_args.ckpt, args=audio_args)
+ args = hunyuan_sampler.args
+
+ rank = local_rank = 0
+ device = torch.device("cuda")
+ if nccl_info.sp_size > 1:
+ device = torch.device(f"cuda:{torch.distributed.get_rank()}")
+ rank = local_rank = torch.distributed.get_rank()
+
+ feature_extractor = AutoFeatureExtractor.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/")
+ wav2vec = WhisperModel.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/").to(device=device, dtype=torch.float32)
+ wav2vec.requires_grad_(False)
+
+
+ BASE_DIR = f'{MODEL_OUTPUT_PATH}/ckpts/det_align/'
+ det_path = os.path.join(BASE_DIR, 'detface.pt')
+ align_instance = AlignImage("cuda", det_path=det_path)
+
+
+
+ if rank == 0:
+ uvicorn.run(app, host="0.0.0.0", port=80)
+ else:
+ worker_loop()
+
diff --git a/hymm_gradio/gradio_audio.py b/hymm_gradio/gradio_audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..3100c8d55bc864028bebb84401dc39b64f4fe21b
--- /dev/null
+++ b/hymm_gradio/gradio_audio.py
@@ -0,0 +1,122 @@
+import os
+import cv2
+import glob
+import json
+import datetime
+import requests
+import gradio as gr
+from tool_for_end2end import *
+
+os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
+DATADIR = './temp'
+_HEADER_ = '''
+
+
Tencent HunyuanVideo-Avatar Demo
+
+
+'''
+# flask url
+URL = "http://127.0.0.1:80/predict2"
+
+def post_and_get(audio_input, id_image, prompt):
+ now = datetime.datetime.now().isoformat()
+ imgdir = os.path.join(DATADIR, 'reference')
+ videodir = os.path.join(DATADIR, 'video')
+ imgfile = os.path.join(imgdir, now + '.png')
+ output_video_path = os.path.join(videodir, now + '.mp4')
+
+
+ os.makedirs(imgdir, exist_ok=True)
+ os.makedirs(videodir, exist_ok=True)
+ cv2.imwrite(imgfile, id_image[:,:,::-1])
+
+ proxies = {
+ "http": None,
+ "https": None,
+ }
+
+ files = {
+ "image_buffer": encode_image_to_base64(imgfile),
+ "audio_buffer": encode_wav_to_base64(audio_input),
+ "text": prompt,
+ "save_fps": 25,
+ }
+ r = requests.get(URL, data = json.dumps(files), proxies=proxies)
+ ret_dict = json.loads(r.text)
+ print(ret_dict["info"])
+ save_video_base64_to_local(
+ video_path=None,
+ base64_buffer=ret_dict["content"][0]["buffer"],
+ output_video_path=output_video_path)
+
+
+ return output_video_path
+
+def create_demo():
+
+ with gr.Blocks() as demo:
+ gr.Markdown(_HEADER_)
+ with gr.Tab('语音数字人驱动'):
+ with gr.Row():
+ with gr.Column(scale=1):
+ with gr.Group():
+ prompt = gr.Textbox(label="Prompt", value="a man is speaking.")
+
+ audio_input = gr.Audio(sources=["upload"],
+ type="filepath",
+ label="Upload Audio",
+ elem_classes="media-upload",
+ scale=1)
+ id_image = gr.Image(label="Input reference image", height=480)
+
+ with gr.Column(scale=2):
+ with gr.Group():
+ output_image = gr.Video(label="Generated Video")
+
+
+ with gr.Column(scale=1):
+ generate_btn = gr.Button("Generate")
+
+ generate_btn.click(fn=post_and_get,
+ inputs=[audio_input, id_image, prompt],
+ outputs=[output_image],
+ )
+
+ # quick_prompts = [[x] for x in glob.glob('./assets/images/*.png')]
+ # example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Other object', samples_per_page=1000, components=[id_image])
+ # example_quick_prompts.click(lambda x: x[0], inputs=example_quick_prompts, outputs=id_image, show_progress=False, queue=False)
+ # with gr.Row(), gr.Column():
+ # gr.Markdown("## Examples")
+ # example_inps = [
+ # [
+ # 'A woman is drinking coffee at a café.',
+ # './assets/images/seg_woman_01.png',
+ # 1280, 720, 30, 129, 7.5, 13, 1024,
+ # "assets/videos/seg_woman_01.mp4"
+ # ],
+ # [
+ # 'In a cubicle of an office building, a woman focuses intently on the computer screen, typing rapidly on the keyboard, surrounded by piles of documents.',
+ # './assets/images/seg_woman_03.png',
+ # 1280, 720, 30, 129, 7.5, 13, 1025,
+ # "./assets/videos/seg_woman_03.mp4"
+ # ],
+ # [
+ # 'A man walks across an ancient stone bridge holding an umbrella, raindrops tapping against it.',
+ # './assets/images/seg_man_01.png',
+ # 1280, 720, 30, 129, 7.5, 13, 1025,
+ # "./assets/videos/seg_man_01.mp4"
+ # ],
+ # [
+ # 'During a train journey, a man admires the changing scenery through the window.',
+ # './assets/images/seg_man_02.png',
+ # 1280, 720, 30, 129, 7.5, 13, 1026,
+ # "./assets/videos/seg_man_02.mp4"
+ # ]
+ # ]
+ # gr.Examples(examples=example_inps, inputs=[prompt, id_image, width, height, num_steps, num_frames, guidance, flow_shift, seed, output_image],)
+ return demo
+
+if __name__ == "__main__":
+ allowed_paths = ['/']
+ demo = create_demo()
+ demo.launch(server_name='0.0.0.0', server_port=8080, share=True, allowed_paths=allowed_paths)
diff --git a/hymm_gradio/tool_for_end2end.py b/hymm_gradio/tool_for_end2end.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b1ba3f1d1781e2bf39fbbe1e5a95673a3227972
--- /dev/null
+++ b/hymm_gradio/tool_for_end2end.py
@@ -0,0 +1,325 @@
+import os
+import io
+import math
+import uuid
+import base64
+import imageio
+import torch
+import torchvision
+from PIL import Image
+import numpy as np
+from copy import deepcopy
+from einops import rearrange
+import torchvision.transforms as transforms
+from torchvision.transforms import ToPILImage
+from hymm_sp.data_kits.audio_dataset import get_audio_feature
+from hymm_sp.data_kits.ffmpeg_utils import save_video
+
+TEMP_DIR = "./temp"
+if not os.path.exists(TEMP_DIR):
+ os.makedirs(TEMP_DIR, exist_ok=True)
+
+
+def data_preprocess_server(args, image_path, audio_path, prompts, feature_extractor):
+ llava_transform = transforms.Compose(
+ [
+ transforms.Resize((336, 336), interpolation=transforms.InterpolationMode.BILINEAR),
+ transforms.ToTensor(),
+ transforms.Normalize((0.48145466, 0.4578275, 0.4082107), (0.26862954, 0.26130258, 0.27577711)),
+ ]
+ )
+
+ """ 生成prompt """
+ if prompts is None:
+ prompts = "Authentic, Realistic, Natural, High-quality, Lens-Fixed."
+ else:
+ prompts = "Authentic, Realistic, Natural, High-quality, Lens-Fixed, " + prompts
+
+ fps = 25
+
+ img_size = args.image_size
+ ref_image = Image.open(image_path).convert('RGB')
+
+ # Resize reference image
+ w, h = ref_image.size
+ scale = img_size / min(w, h)
+ new_w = round(w * scale / 64) * 64
+ new_h = round(h * scale / 64) * 64
+
+ if img_size == 704:
+ img_size_long = 1216
+ if new_w * new_h > img_size * img_size_long:
+ scale = math.sqrt(img_size * img_size_long / w / h)
+ new_w = round(w * scale / 64) * 64
+ new_h = round(h * scale / 64) * 64
+
+ ref_image = ref_image.resize((new_w, new_h), Image.LANCZOS)
+
+ ref_image = np.array(ref_image)
+ ref_image = torch.from_numpy(ref_image)
+
+ audio_input, audio_len = get_audio_feature(feature_extractor, audio_path)
+ audio_prompts = audio_input[0]
+
+ motion_bucket_id_heads = np.array([25] * 4)
+ motion_bucket_id_exps = np.array([30] * 4)
+ motion_bucket_id_heads = torch.from_numpy(motion_bucket_id_heads)
+ motion_bucket_id_exps = torch.from_numpy(motion_bucket_id_exps)
+ fps = torch.from_numpy(np.array(fps))
+
+ to_pil = ToPILImage()
+ pixel_value_ref = rearrange(ref_image.clone().unsqueeze(0), "b h w c -> b c h w") # (b c h w)
+
+ pixel_value_ref_llava = [llava_transform(to_pil(image)) for image in pixel_value_ref]
+ pixel_value_ref_llava = torch.stack(pixel_value_ref_llava, dim=0)
+
+ batch = {
+ "text_prompt": [prompts],
+ "audio_path": [audio_path],
+ "image_path": [image_path],
+ "fps": fps.unsqueeze(0).to(dtype=torch.float16),
+ "audio_prompts": audio_prompts.unsqueeze(0).to(dtype=torch.float16),
+ "audio_len": [audio_len],
+ "motion_bucket_id_exps": motion_bucket_id_exps.unsqueeze(0),
+ "motion_bucket_id_heads": motion_bucket_id_heads.unsqueeze(0),
+ "pixel_value_ref": pixel_value_ref.unsqueeze(0).to(dtype=torch.float16),
+ "pixel_value_ref_llava": pixel_value_ref_llava.unsqueeze(0).to(dtype=torch.float16)
+ }
+
+ return batch
+
+def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, quality=8):
+ videos = rearrange(videos, "b c t h w -> t b c h w")
+ outputs = []
+ for x in videos:
+ x = torchvision.utils.make_grid(x, nrow=n_rows)
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
+ if rescale:
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
+ x = torch.clamp(x,0,1)
+ x = (x * 255).numpy().astype(np.uint8)
+ outputs.append(x)
+
+ os.makedirs(os.path.dirname(path), exist_ok=True)
+ imageio.mimsave(path, outputs, fps=fps, quality=quality)
+
+def encode_image_to_base64(image_path):
+ try:
+ with open(image_path, 'rb') as image_file:
+ image_data = image_file.read()
+ encoded_data = base64.b64encode(image_data).decode('utf-8')
+ print(f"Image file '{image_path}' has been successfully encoded to Base64.")
+ return encoded_data
+
+ except Exception as e:
+ print(f"Error encoding image: {e}")
+ return None
+
+def encode_video_to_base64(video_path):
+ try:
+ with open(video_path, 'rb') as video_file:
+ video_data = video_file.read()
+ encoded_data = base64.b64encode(video_data).decode('utf-8')
+ print(f"Video file '{video_path}' has been successfully encoded to Base64.")
+ return encoded_data
+
+ except Exception as e:
+ print(f"Error encoding video: {e}")
+ return None
+
+def encode_wav_to_base64(wav_path):
+ try:
+ with open(wav_path, 'rb') as audio_file:
+ audio_data = audio_file.read()
+ encoded_data = base64.b64encode(audio_data).decode('utf-8')
+ print(f"Audio file '{wav_path}' has been successfully encoded to Base64.")
+ return encoded_data
+
+ except Exception as e:
+ print(f"Error encoding audio: {e}")
+ return None
+
+def encode_pkl_to_base64(pkl_path):
+ try:
+ with open(pkl_path, 'rb') as pkl_file:
+ pkl_data = pkl_file.read()
+
+ encoded_data = base64.b64encode(pkl_data).decode('utf-8')
+
+ print(f"Pickle file '{pkl_path}' has been successfully encoded to Base64.")
+ return encoded_data
+
+ except Exception as e:
+ print(f"Error encoding pickle: {e}")
+ return None
+
+def decode_base64_to_image(base64_buffer_str):
+ try:
+ image_data = base64.b64decode(base64_buffer_str)
+ image = Image.open(io.BytesIO(image_data))
+ image_array = np.array(image)
+ print(f"Image Base64 string has beed succesfully decoded to image.")
+ return image_array
+ except Exception as e:
+ print(f"Error encdecodingoding image: {e}")
+ return None
+
+def decode_base64_to_video(base64_buffer_str):
+ try:
+ video_data = base64.b64decode(base64_buffer_str)
+ video_bytes = io.BytesIO(video_data)
+ video_bytes.seek(0)
+ video_reader = imageio.get_reader(video_bytes, 'ffmpeg')
+ video_frames = [frame for frame in video_reader]
+ return video_frames
+ except Exception as e:
+ print(f"Error decoding video: {e}")
+ return None
+
+
+def save_video_base64_to_local(video_path=None, base64_buffer=None, output_video_path=None):
+ if video_path is not None and base64_buffer is None:
+ video_buffer_base64 = encode_video_to_base64(video_path)
+ elif video_path is None and base64_buffer is not None:
+ video_buffer_base64 = deepcopy(base64_buffer)
+ else:
+ print("Please pass either 'video_path' or 'base64_buffer'")
+ return None
+
+ if video_buffer_base64 is not None:
+ video_data = base64.b64decode(video_buffer_base64)
+ if output_video_path is None:
+ uuid_string = str(uuid.uuid4())
+ temp_video_path = f'{TEMP_DIR}/{uuid_string}.mp4'
+ else:
+ temp_video_path = output_video_path
+ with open(temp_video_path, 'wb') as video_file:
+ video_file.write(video_data)
+ return temp_video_path
+ else:
+ return None
+
+def save_audio_base64_to_local(audio_path=None, base64_buffer=None):
+ if audio_path is not None and base64_buffer is None:
+ audio_buffer_base64 = encode_wav_to_base64(audio_path)
+ elif audio_path is None and base64_buffer is not None:
+ audio_buffer_base64 = deepcopy(base64_buffer)
+ else:
+ print("Please pass either 'audio_path' or 'base64_buffer'")
+ return None
+
+ if audio_buffer_base64 is not None:
+ audio_data = base64.b64decode(audio_buffer_base64)
+ uuid_string = str(uuid.uuid4())
+ temp_audio_path = f'{TEMP_DIR}/{uuid_string}.wav'
+ with open(temp_audio_path, 'wb') as audio_file:
+ audio_file.write(audio_data)
+ return temp_audio_path
+ else:
+ return None
+
+def save_pkl_base64_to_local(pkl_path=None, base64_buffer=None):
+ if pkl_path is not None and base64_buffer is None:
+ pkl_buffer_base64 = encode_pkl_to_base64(pkl_path)
+ elif pkl_path is None and base64_buffer is not None:
+ pkl_buffer_base64 = deepcopy(base64_buffer)
+ else:
+ print("Please pass either 'pkl_path' or 'base64_buffer'")
+ return None
+
+ if pkl_buffer_base64 is not None:
+ pkl_data = base64.b64decode(pkl_buffer_base64)
+ uuid_string = str(uuid.uuid4())
+ temp_pkl_path = f'{TEMP_DIR}/{uuid_string}.pkl'
+ with open(temp_pkl_path, 'wb') as pkl_file:
+ pkl_file.write(pkl_data)
+ return temp_pkl_path
+ else:
+ return None
+
+def remove_temp_fles(input_dict):
+ for key, val in input_dict.items():
+ if "_path" in key and val is not None and os.path.exists(val):
+ os.remove(val)
+ print(f"Remove temporary {key} from {val}")
+
+def process_output_dict(output_dict):
+
+ uuid_string = str(uuid.uuid4())
+ temp_video_path = f'{TEMP_DIR}/{uuid_string}.mp4'
+ save_video(output_dict["video"], temp_video_path, fps=output_dict.get("save_fps", 25))
+
+ # Add audio
+ if output_dict["audio"] is not None and os.path.exists(output_dict["audio"]):
+ output_path = temp_video_path
+ audio_path = output_dict["audio"]
+ save_path = temp_video_path.replace(".mp4", "_audio.mp4")
+ print('='*100)
+ print(f"output_path = {output_path}\n audio_path = {audio_path}\n save_path = {save_path}")
+ os.system(f"ffmpeg -i '{output_path}' -i '{audio_path}' -shortest '{save_path}' -y -loglevel quiet; rm '{output_path}'")
+ else:
+ save_path = temp_video_path
+
+ video_base64_buffer = encode_video_to_base64(save_path)
+
+ encoded_output_dict = {
+ "errCode": output_dict["err_code"],
+ "content": [
+ {
+ "buffer": video_base64_buffer
+ },
+ ],
+ "info":output_dict["err_msg"],
+ }
+
+
+
+ return encoded_output_dict
+
+
+def save_image_base64_to_local(image_path=None, base64_buffer=None):
+ # Encode image to base64 buffer
+ if image_path is not None and base64_buffer is None:
+ image_buffer_base64 = encode_image_to_base64(image_path)
+ elif image_path is None and base64_buffer is not None:
+ image_buffer_base64 = deepcopy(base64_buffer)
+ else:
+ print("Please pass either 'image_path' or 'base64_buffer'")
+ return None
+
+ # Decode base64 buffer and save to local disk
+ if image_buffer_base64 is not None:
+ image_data = base64.b64decode(image_buffer_base64)
+ uuid_string = str(uuid.uuid4())
+ temp_image_path = f'{TEMP_DIR}/{uuid_string}.png'
+ with open(temp_image_path, 'wb') as image_file:
+ image_file.write(image_data)
+ return temp_image_path
+ else:
+ return None
+
+def process_input_dict(input_dict):
+
+ decoded_input_dict = {}
+
+ decoded_input_dict["save_fps"] = input_dict.get("save_fps", 25)
+
+ image_base64_buffer = input_dict.get("image_buffer", None)
+ if image_base64_buffer is not None:
+ decoded_input_dict["image_path"] = save_image_base64_to_local(
+ image_path=None,
+ base64_buffer=image_base64_buffer)
+ else:
+ decoded_input_dict["image_path"] = None
+
+ audio_base64_buffer = input_dict.get("audio_buffer", None)
+ if audio_base64_buffer is not None:
+ decoded_input_dict["audio_path"] = save_audio_base64_to_local(
+ audio_path=None,
+ base64_buffer=audio_base64_buffer)
+ else:
+ decoded_input_dict["audio_path"] = None
+
+ decoded_input_dict["prompt"] = input_dict.get("text", None)
+
+ return decoded_input_dict
\ No newline at end of file
diff --git a/hymm_sp/__init__.py b/hymm_sp/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/hymm_sp/__pycache__/__init__.cpython-310.pyc b/hymm_sp/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e71c0dd232c20c1c7118f1516996e125c66a190e
Binary files /dev/null and b/hymm_sp/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/__pycache__/config.cpython-310.pyc b/hymm_sp/__pycache__/config.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..04736342535bbde1bf8d5594bd78fde8c0b674fe
Binary files /dev/null and b/hymm_sp/__pycache__/config.cpython-310.pyc differ
diff --git a/hymm_sp/__pycache__/constants.cpython-310.pyc b/hymm_sp/__pycache__/constants.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0642332471e26d651188def1a2dec53ab8d8b562
Binary files /dev/null and b/hymm_sp/__pycache__/constants.cpython-310.pyc differ
diff --git a/hymm_sp/__pycache__/helpers.cpython-310.pyc b/hymm_sp/__pycache__/helpers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ba22320d88716614bd989a58ad7c352c08fd2c5e
Binary files /dev/null and b/hymm_sp/__pycache__/helpers.cpython-310.pyc differ
diff --git a/hymm_sp/__pycache__/inference.cpython-310.pyc b/hymm_sp/__pycache__/inference.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7bc26fe2fe2ab810393782c22afc1684db576d62
Binary files /dev/null and b/hymm_sp/__pycache__/inference.cpython-310.pyc differ
diff --git a/hymm_sp/__pycache__/sample_inference_audio.cpython-310.pyc b/hymm_sp/__pycache__/sample_inference_audio.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..73fae8bddc96b61f82f542a437a7bf7c25fb3dde
Binary files /dev/null and b/hymm_sp/__pycache__/sample_inference_audio.cpython-310.pyc differ
diff --git a/hymm_sp/config.py b/hymm_sp/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..949570b4745437b9bb110a49dbe07c9cf8bdd436
--- /dev/null
+++ b/hymm_sp/config.py
@@ -0,0 +1,142 @@
+import argparse
+from hymm_sp.constants import *
+import re
+import collections.abc
+
+def as_tuple(x):
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
+ return tuple(x)
+ if x is None or isinstance(x, (int, float, str)):
+ return (x,)
+ else:
+ raise ValueError(f"Unknown type {type(x)}")
+
+def parse_args(namespace=None):
+ parser = argparse.ArgumentParser(description="Hunyuan Multimodal training/inference script")
+ parser = add_extra_args(parser)
+ args = parser.parse_args(namespace=namespace)
+ args = sanity_check_args(args)
+ return args
+
+def add_extra_args(parser: argparse.ArgumentParser):
+ parser = add_network_args(parser)
+ parser = add_extra_models_args(parser)
+ parser = add_denoise_schedule_args(parser)
+ parser = add_evaluation_args(parser)
+ return parser
+
+def add_network_args(parser: argparse.ArgumentParser):
+ group = parser.add_argument_group(title="Network")
+ group.add_argument("--model", type=str, default="HYVideo-T/2",
+ help="Model architecture to use. It it also used to determine the experiment directory.")
+ group.add_argument("--latent-channels", type=str, default=None,
+ help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, "
+ "it still needs to match the latent channels of the VAE model.")
+ group.add_argument("--rope-theta", type=int, default=256, help="Theta used in RoPE.")
+ return parser
+
+def add_extra_models_args(parser: argparse.ArgumentParser):
+ group = parser.add_argument_group(title="Extra Models (VAE, Text Encoder, Tokenizer)")
+
+ # VAE
+ group.add_argument("--vae", type=str, default="884-16c-hy0801", help="Name of the VAE model.")
+ group.add_argument("--vae-precision", type=str, default="fp16",
+ help="Precision mode for the VAE model.")
+ group.add_argument("--vae-tiling", action="store_true", default=True, help="Enable tiling for the VAE model.")
+ group.add_argument("--text-encoder", type=str, default="llava-llama-3-8b", choices=list(TEXT_ENCODER_PATH),
+ help="Name of the text encoder model.")
+ group.add_argument("--text-encoder-precision", type=str, default="fp16", choices=PRECISIONS,
+ help="Precision mode for the text encoder model.")
+ group.add_argument("--text-states-dim", type=int, default=4096, help="Dimension of the text encoder hidden states.")
+ group.add_argument("--text-len", type=int, default=256, help="Maximum length of the text input.")
+ group.add_argument("--tokenizer", type=str, default="llava-llama-3-8b", choices=list(TOKENIZER_PATH),
+ help="Name of the tokenizer model.")
+ group.add_argument("--text-encoder-infer-mode", type=str, default="encoder", choices=["encoder", "decoder"],
+ help="Inference mode for the text encoder model. It should match the text encoder type. T5 and "
+ "CLIP can only work in 'encoder' mode, while Llava/GLM can work in both modes.")
+ group.add_argument("--prompt-template-video", type=str, default='li-dit-encode-video', choices=PROMPT_TEMPLATE,
+ help="Video prompt template for the decoder-only text encoder model.")
+ group.add_argument("--hidden-state-skip-layer", type=int, default=2,
+ help="Skip layer for hidden states.")
+ group.add_argument("--apply-final-norm", action="store_true",
+ help="Apply final normalization to the used text encoder hidden states.")
+
+ # - CLIP
+ group.add_argument("--text-encoder-2", type=str, default='clipL', choices=list(TEXT_ENCODER_PATH),
+ help="Name of the second text encoder model.")
+ group.add_argument("--text-encoder-precision-2", type=str, default="fp16", choices=PRECISIONS,
+ help="Precision mode for the second text encoder model.")
+ group.add_argument("--text-states-dim-2", type=int, default=768,
+ help="Dimension of the second text encoder hidden states.")
+ group.add_argument("--tokenizer-2", type=str, default='clipL', choices=list(TOKENIZER_PATH),
+ help="Name of the second tokenizer model.")
+ group.add_argument("--text-len-2", type=int, default=77, help="Maximum length of the second text input.")
+ group.set_defaults(use_attention_mask=True)
+ group.add_argument("--text-projection", type=str, default="single_refiner", choices=TEXT_PROJECTION,
+ help="A projection layer for bridging the text encoder hidden states and the diffusion model "
+ "conditions.")
+ return parser
+
+
+def add_denoise_schedule_args(parser: argparse.ArgumentParser):
+ group = parser.add_argument_group(title="Denoise schedule")
+ group.add_argument("--flow-shift-eval-video", type=float, default=None, help="Shift factor for flow matching schedulers when using video data.")
+ group.add_argument("--flow-reverse", action="store_true", default=True, help="If reverse, learning/sampling from t=1 -> t=0.")
+ group.add_argument("--flow-solver", type=str, default="euler", help="Solver for flow matching.")
+ group.add_argument("--use-linear-quadratic-schedule", action="store_true", help="Use linear quadratic schedule for flow matching."
+ "Follow MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)")
+ group.add_argument("--linear-schedule-end", type=int, default=25, help="End step for linear quadratic schedule for flow matching.")
+ return parser
+
+def add_evaluation_args(parser: argparse.ArgumentParser):
+ group = parser.add_argument_group(title="Validation Loss Evaluation")
+ parser.add_argument("--precision", type=str, default="bf16", choices=PRECISIONS,
+ help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.")
+ parser.add_argument("--reproduce", action="store_true",
+ help="Enable reproducibility by setting random seeds and deterministic algorithms.")
+ parser.add_argument("--ckpt", type=str, help="Path to the checkpoint to evaluate.")
+ parser.add_argument("--load-key", type=str, default="module", choices=["module", "ema"],
+ help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.")
+ parser.add_argument("--cpu-offload", action="store_true", help="Use CPU offload for the model load.")
+ parser.add_argument("--infer-min", action="store_true", help="infer 5s.")
+ group.add_argument( "--use-fp8", action="store_true", help="Enable use fp8 for inference acceleration.")
+ group.add_argument("--video-size", type=int, nargs='+', default=512,
+ help="Video size for training. If a single value is provided, it will be used for both width "
+ "and height. If two values are provided, they will be used for width and height "
+ "respectively.")
+ group.add_argument("--sample-n-frames", type=int, default=1,
+ help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1")
+ group.add_argument("--infer-steps", type=int, default=100, help="Number of denoising steps for inference.")
+ group.add_argument("--val-disable-autocast", action="store_true",
+ help="Disable autocast for denoising loop and vae decoding in pipeline sampling.")
+ group.add_argument("--num-images", type=int, default=1, help="Number of images to generate for each prompt.")
+ group.add_argument("--seed", type=int, default=1024, help="Seed for evaluation.")
+ group.add_argument("--save-path-suffix", type=str, default="", help="Suffix for the directory of saved samples.")
+ group.add_argument("--pos-prompt", type=str, default='', help="Prompt for sampling during evaluation.")
+ group.add_argument("--neg-prompt", type=str, default='', help="Negative prompt for sampling during evaluation.")
+ group.add_argument("--image-size", type=int, default=704)
+ group.add_argument("--pad-face-size", type=float, default=0.7, help="Pad bbox for face align.")
+ group.add_argument("--image-path", type=str, default="", help="")
+ group.add_argument("--save-path", type=str, default=None, help="Path to save the generated samples.")
+ group.add_argument("--input", type=str, default=None, help="test data.")
+ group.add_argument("--item-name", type=str, default=None, help="")
+ group.add_argument("--cfg-scale", type=float, default=7.5, help="Classifier free guidance scale.")
+ group.add_argument("--ip-cfg-scale", type=float, default=0, help="Classifier free guidance scale.")
+ group.add_argument("--use-deepcache", type=int, default=1)
+ return parser
+
+def sanity_check_args(args):
+ # VAE channels
+ vae_pattern = r"\d{2,3}-\d{1,2}c-\w+"
+ if not re.match(vae_pattern, args.vae):
+ raise ValueError(
+ f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'."
+ )
+ vae_channels = int(args.vae.split("-")[1][:-1])
+ if args.latent_channels is None:
+ args.latent_channels = vae_channels
+ if vae_channels != args.latent_channels:
+ raise ValueError(
+ f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})."
+ )
+ return args
diff --git a/hymm_sp/constants.py b/hymm_sp/constants.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d52df91d43a894ab8a52e47d6edd3b4e10d39a7
--- /dev/null
+++ b/hymm_sp/constants.py
@@ -0,0 +1,59 @@
+import os
+import torch
+
+__all__ = [
+ "PROMPT_TEMPLATE", "MODEL_BASE", "PRECISION_TO_TYPE",
+ "PRECISIONS", "VAE_PATH", "TEXT_ENCODER_PATH", "TOKENIZER_PATH",
+ "TEXT_PROJECTION",
+]
+
+# =================== Constant Values =====================
+
+PRECISION_TO_TYPE = {
+ 'fp32': torch.float32,
+ 'fp16': torch.float16,
+ 'bf16': torch.bfloat16,
+}
+
+PROMPT_TEMPLATE_ENCODE_VIDEO = (
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
+ "1. The main content and theme of the video."
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
+ "4. background environment, light, style and atmosphere."
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
+)
+
+PROMPT_TEMPLATE = {
+ "li-dit-encode-video": {"template": PROMPT_TEMPLATE_ENCODE_VIDEO, "crop_start": 95},
+}
+
+# ======================= Model ======================
+PRECISIONS = {"fp32", "fp16", "bf16"}
+
+# =================== Model Path =====================
+MODEL_BASE = os.getenv("MODEL_BASE")
+MODEL_BASE=f"{MODEL_BASE}/ckpts"
+
+# 3D VAE
+VAE_PATH = {
+ "884-16c-hy0801": f"{MODEL_BASE}/hunyuan-video-t2v-720p/vae",
+}
+
+# Text Encoder
+TEXT_ENCODER_PATH = {
+ "clipL": f"{MODEL_BASE}/text_encoder_2",
+ "llava-llama-3-8b": f"{MODEL_BASE}/llava_llama_image",
+}
+
+# Tokenizer
+TOKENIZER_PATH = {
+ "clipL": f"{MODEL_BASE}/text_encoder_2",
+ "llava-llama-3-8b":f"{MODEL_BASE}/llava_llama_image",
+}
+
+TEXT_PROJECTION = {
+ "linear", # Default, an nn.Linear() layer
+ "single_refiner", # Single TokenRefiner. Refer to LI-DiT
+}
diff --git a/hymm_sp/data_kits/__pycache__/audio_dataset.cpython-310.pyc b/hymm_sp/data_kits/__pycache__/audio_dataset.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..167a32ecd13fb60c8c7d8cb8f326822e83329e81
Binary files /dev/null and b/hymm_sp/data_kits/__pycache__/audio_dataset.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/__pycache__/audio_preprocessor.cpython-310.pyc b/hymm_sp/data_kits/__pycache__/audio_preprocessor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cfcd9dbb22c29885e196f0f32ad3c39992fbda4c
Binary files /dev/null and b/hymm_sp/data_kits/__pycache__/audio_preprocessor.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/__pycache__/data_tools.cpython-310.pyc b/hymm_sp/data_kits/__pycache__/data_tools.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6f961ca00f4f4c14cb0d32d87b778680febe59fe
Binary files /dev/null and b/hymm_sp/data_kits/__pycache__/data_tools.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/__pycache__/ffmpeg_utils.cpython-310.pyc b/hymm_sp/data_kits/__pycache__/ffmpeg_utils.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..07afed918376098aabe530cefeae7ecdcfc92d50
Binary files /dev/null and b/hymm_sp/data_kits/__pycache__/ffmpeg_utils.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/audio_dataset.py b/hymm_sp/data_kits/audio_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..e65cee54f0f836454ee70b524afd33a718080a47
--- /dev/null
+++ b/hymm_sp/data_kits/audio_dataset.py
@@ -0,0 +1,170 @@
+import os
+import cv2
+import math
+import json
+import torch
+import random
+import librosa
+import traceback
+import torchvision
+import numpy as np
+import pandas as pd
+from PIL import Image
+from einops import rearrange
+from torch.utils.data import Dataset
+from decord import VideoReader, cpu
+from transformers import CLIPImageProcessor
+import torchvision.transforms as transforms
+from torchvision.transforms import ToPILImage
+
+
+
+def get_audio_feature(feature_extractor, audio_path):
+ audio_input, sampling_rate = librosa.load(audio_path, sr=16000)
+ assert sampling_rate == 16000
+
+ audio_features = []
+ window = 750*640
+ for i in range(0, len(audio_input), window):
+ audio_feature = feature_extractor(audio_input[i:i+window],
+ sampling_rate=sampling_rate,
+ return_tensors="pt",
+ ).input_features
+ audio_features.append(audio_feature)
+
+ audio_features = torch.cat(audio_features, dim=-1)
+ return audio_features, len(audio_input) // 640
+
+
+class VideoAudioTextLoaderVal(Dataset):
+ def __init__(
+ self,
+ image_size: int,
+ meta_file: str,
+ **kwargs,
+ ):
+ super().__init__()
+ self.meta_file = meta_file
+ self.image_size = image_size
+ self.text_encoder = kwargs.get("text_encoder", None) # llava_text_encoder
+ self.text_encoder_2 = kwargs.get("text_encoder_2", None) # clipL_text_encoder
+ self.feature_extractor = kwargs.get("feature_extractor", None)
+ self.meta_files = []
+
+ csv_data = pd.read_csv(meta_file)
+ for idx in range(len(csv_data)):
+ self.meta_files.append(
+ {
+ "videoid": str(csv_data["videoid"][idx]),
+ "image_path": str(csv_data["image"][idx]),
+ "audio_path": str(csv_data["audio"][idx]),
+ "prompt": str(csv_data["prompt"][idx]),
+ "fps": float(csv_data["fps"][idx])
+ }
+ )
+
+ self.llava_transform = transforms.Compose(
+ [
+ transforms.Resize((336, 336), interpolation=transforms.InterpolationMode.BILINEAR),
+ transforms.ToTensor(),
+ transforms.Normalize((0.48145466, 0.4578275, 0.4082107), (0.26862954, 0.26130258, 0.27577711)),
+ ]
+ )
+ self.clip_image_processor = CLIPImageProcessor()
+
+ self.device = torch.device("cuda")
+ self.weight_dtype = torch.float16
+
+
+ def __len__(self):
+ return len(self.meta_files)
+
+ @staticmethod
+ def get_text_tokens(text_encoder, description, dtype_encode="video"):
+ text_inputs = text_encoder.text2tokens(description, data_type=dtype_encode)
+ text_ids = text_inputs["input_ids"].squeeze(0)
+ text_mask = text_inputs["attention_mask"].squeeze(0)
+ return text_ids, text_mask
+
+ def get_batch_data(self, idx):
+ meta_file = self.meta_files[idx]
+ videoid = meta_file["videoid"]
+ image_path = meta_file["image_path"]
+ audio_path = meta_file["audio_path"]
+ prompt = "Authentic, Realistic, Natural, High-quality, Lens-Fixed, " + meta_file["prompt"]
+ fps = meta_file["fps"]
+
+ img_size = self.image_size
+ ref_image = Image.open(image_path).convert('RGB')
+
+ # Resize reference image
+ w, h = ref_image.size
+ scale = img_size / min(w, h)
+ new_w = round(w * scale / 64) * 64
+ new_h = round(h * scale / 64) * 64
+
+ if img_size == 704:
+ img_size_long = 1216
+ if new_w * new_h > img_size * img_size_long:
+ import math
+ scale = math.sqrt(img_size * img_size_long / w / h)
+ new_w = round(w * scale / 64) * 64
+ new_h = round(h * scale / 64) * 64
+
+ ref_image = ref_image.resize((new_w, new_h), Image.LANCZOS)
+
+ ref_image = np.array(ref_image)
+ ref_image = torch.from_numpy(ref_image)
+
+ audio_input, audio_len = get_audio_feature(self.feature_extractor, audio_path)
+ audio_prompts = audio_input[0]
+
+ motion_bucket_id_heads = np.array([25] * 4)
+ motion_bucket_id_exps = np.array([30] * 4)
+ motion_bucket_id_heads = torch.from_numpy(motion_bucket_id_heads)
+ motion_bucket_id_exps = torch.from_numpy(motion_bucket_id_exps)
+ fps = torch.from_numpy(np.array(fps))
+
+ to_pil = ToPILImage()
+ pixel_value_ref = rearrange(ref_image.clone().unsqueeze(0), "b h w c -> b c h w") # (b c h w)
+
+ pixel_value_ref_llava = [self.llava_transform(to_pil(image)) for image in pixel_value_ref]
+ pixel_value_ref_llava = torch.stack(pixel_value_ref_llava, dim=0)
+ pixel_value_ref_clip = self.clip_image_processor(
+ images=Image.fromarray((pixel_value_ref[0].permute(1,2,0)).data.cpu().numpy().astype(np.uint8)),
+ return_tensors="pt"
+ ).pixel_values[0]
+ pixel_value_ref_clip = pixel_value_ref_clip.unsqueeze(0)
+
+ # Encode text prompts
+
+ text_ids, text_mask = self.get_text_tokens(self.text_encoder, prompt)
+ text_ids_2, text_mask_2 = self.get_text_tokens(self.text_encoder_2, prompt)
+
+ # Output batch
+ batch = {
+ "text_prompt": prompt, #
+ "videoid": videoid,
+ "pixel_value_ref": pixel_value_ref.to(dtype=torch.float16), # 参考图,用于vae提特征 (1, 3, h, w), 取值范围(0, 255)
+ "pixel_value_ref_llava": pixel_value_ref_llava.to(dtype=torch.float16), # 参考图,用于llava提特征 (1, 3, 336, 336), 取值范围 = CLIP取值范围
+ "pixel_value_ref_clip": pixel_value_ref_clip.to(dtype=torch.float16), # 参考图,用于clip_image_encoder提特征 (1, 3, 244, 244), 取值范围 = CLIP取值范围
+ "audio_prompts": audio_prompts.to(dtype=torch.float16),
+ "motion_bucket_id_heads": motion_bucket_id_heads.to(dtype=text_ids.dtype),
+ "motion_bucket_id_exps": motion_bucket_id_exps.to(dtype=text_ids.dtype),
+ "fps": fps.to(dtype=torch.float16),
+ "text_ids": text_ids.clone(), # 对应llava_text_encoder
+ "text_mask": text_mask.clone(), # 对应llava_text_encoder
+ "text_ids_2": text_ids_2.clone(), # 对应clip_text_encoder
+ "text_mask_2": text_mask_2.clone(), # 对应clip_text_encoder
+ "audio_len": audio_len,
+ "image_path": image_path,
+ "audio_path": audio_path,
+ }
+ return batch
+
+ def __getitem__(self, idx):
+ return self.get_batch_data(idx)
+
+
+
+
\ No newline at end of file
diff --git a/hymm_sp/data_kits/audio_preprocessor.py b/hymm_sp/data_kits/audio_preprocessor.py
new file mode 100644
index 0000000000000000000000000000000000000000..89ac4707c3d0b18f781746286fb540ab89ba6a62
--- /dev/null
+++ b/hymm_sp/data_kits/audio_preprocessor.py
@@ -0,0 +1,72 @@
+
+import os
+import cv2
+import json
+import time
+import decord
+import einops
+import librosa
+import torch
+import random
+import argparse
+import traceback
+import numpy as np
+from tqdm import tqdm
+from PIL import Image
+from einops import rearrange
+
+
+
+def get_facemask(ref_image, align_instance, area=1.25):
+ # ref_image: (b f c h w)
+ bsz, f, c, h, w = ref_image.shape
+ images = rearrange(ref_image, "b f c h w -> (b f) h w c").data.cpu().numpy().astype(np.uint8)
+ face_masks = []
+ for image in images:
+ image_pil = Image.fromarray(image).convert("RGB")
+ _, _, bboxes_list = align_instance(np.array(image_pil)[:,:,[2,1,0]], maxface=True)
+ try:
+ bboxSrc = bboxes_list[0]
+ except:
+ bboxSrc = [0, 0, w, h]
+ x1, y1, ww, hh = bboxSrc
+ x2, y2 = x1 + ww, y1 + hh
+ ww, hh = (x2-x1) * area, (y2-y1) * area
+ center = [(x2+x1)//2, (y2+y1)//2]
+ x1 = max(center[0] - ww//2, 0)
+ y1 = max(center[1] - hh//2, 0)
+ x2 = min(center[0] + ww//2, w)
+ y2 = min(center[1] + hh//2, h)
+
+ face_mask = np.zeros_like(np.array(image_pil))
+ face_mask[int(y1):int(y2), int(x1):int(x2)] = 1.0
+ face_masks.append(torch.from_numpy(face_mask[...,:1]))
+ face_masks = torch.stack(face_masks, dim=0) # (b*f, h, w, c)
+ face_masks = rearrange(face_masks, "(b f) h w c -> b c f h w", b=bsz, f=f)
+ face_masks = face_masks.to(device=ref_image.device, dtype=ref_image.dtype)
+ return face_masks
+
+
+def encode_audio(wav2vec, audio_feats, fps, num_frames=129):
+ if fps == 25:
+ start_ts = [0]
+ step_ts = [1]
+ elif fps == 12.5:
+ start_ts = [0]
+ step_ts = [2]
+ num_frames = min(num_frames, 400)
+ audio_feats = wav2vec.encoder(audio_feats.unsqueeze(0)[:, :, :3000], output_hidden_states=True).hidden_states
+ audio_feats = torch.stack(audio_feats, dim=2)
+ audio_feats = torch.cat([torch.zeros_like(audio_feats[:,:4]), audio_feats], 1)
+
+ audio_prompts = []
+ for bb in range(1):
+ audio_feats_list = []
+ for f in range(num_frames):
+ cur_t = (start_ts[bb] + f * step_ts[bb]) * 2
+ audio_clip = audio_feats[bb:bb+1, cur_t: cur_t+10]
+ audio_feats_list.append(audio_clip)
+ audio_feats_list = torch.stack(audio_feats_list, 1)
+ audio_prompts.append(audio_feats_list)
+ audio_prompts = torch.cat(audio_prompts)
+ return audio_prompts
\ No newline at end of file
diff --git a/hymm_sp/data_kits/data_tools.py b/hymm_sp/data_kits/data_tools.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7d6077dbc79cba3e19281b3e4de7a1480158277
--- /dev/null
+++ b/hymm_sp/data_kits/data_tools.py
@@ -0,0 +1,41 @@
+import os
+import cv2
+import torch
+import numpy as np
+import imageio
+import torchvision
+from einops import rearrange
+
+
+def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, quality=8):
+ videos = rearrange(videos, "b c t h w -> t b c h w")
+ outputs = []
+ for x in videos:
+ x = torchvision.utils.make_grid(x, nrow=n_rows)
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
+ if rescale:
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
+ x = torch.clamp(x,0,1)
+ x = (x * 255).numpy().astype(np.uint8)
+ outputs.append(x)
+
+ os.makedirs(os.path.dirname(path), exist_ok=True)
+ imageio.mimsave(path, outputs, fps=fps, quality=quality)
+
+def pad_image(crop_img, size, color=(255, 255, 255), resize_ratio=1):
+ crop_h, crop_w = crop_img.shape[:2]
+ target_w, target_h = size
+ scale_h, scale_w = target_h / crop_h, target_w / crop_w
+ if scale_w > scale_h:
+ resize_h = int(target_h*resize_ratio)
+ resize_w = int(crop_w / crop_h * resize_h)
+ else:
+ resize_w = int(target_w*resize_ratio)
+ resize_h = int(crop_h / crop_w * resize_w)
+ crop_img = cv2.resize(crop_img, (resize_w, resize_h))
+ pad_left = (target_w - resize_w) // 2
+ pad_top = (target_h - resize_h) // 2
+ pad_right = target_w - resize_w - pad_left
+ pad_bottom = target_h - resize_h - pad_top
+ crop_img = cv2.copyMakeBorder(crop_img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=color)
+ return crop_img
\ No newline at end of file
diff --git a/hymm_sp/data_kits/face_align/__init__.py b/hymm_sp/data_kits/face_align/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6600221962b39f5270b363e29c7d257fd9830d9
--- /dev/null
+++ b/hymm_sp/data_kits/face_align/__init__.py
@@ -0,0 +1 @@
+from .align import AlignImage
\ No newline at end of file
diff --git a/hymm_sp/data_kits/face_align/__pycache__/__init__.cpython-310.pyc b/hymm_sp/data_kits/face_align/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..834523a54ad5249e4b862b7c9e2ad8caba3b475a
Binary files /dev/null and b/hymm_sp/data_kits/face_align/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/face_align/__pycache__/align.cpython-310.pyc b/hymm_sp/data_kits/face_align/__pycache__/align.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..74ac6f7859169c52439b0ac3bde1b40e6fedd9fc
Binary files /dev/null and b/hymm_sp/data_kits/face_align/__pycache__/align.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/face_align/__pycache__/detface.cpython-310.pyc b/hymm_sp/data_kits/face_align/__pycache__/detface.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cf027bccdf1a974cb2f4aae60b40ec517343ae12
Binary files /dev/null and b/hymm_sp/data_kits/face_align/__pycache__/detface.cpython-310.pyc differ
diff --git a/hymm_sp/data_kits/face_align/align.py b/hymm_sp/data_kits/face_align/align.py
new file mode 100644
index 0000000000000000000000000000000000000000..610c441efb41fa3e02fc0e8005f6aff42b80d333
--- /dev/null
+++ b/hymm_sp/data_kits/face_align/align.py
@@ -0,0 +1,34 @@
+import os
+import sys
+import torch
+from .detface import DetFace
+
+class AlignImage(object):
+ def __init__(self, device='cuda', det_path=''):
+ self.facedet = DetFace(pt_path=det_path, confThreshold=0.5, nmsThreshold=0.45, device=device)
+
+ @torch.no_grad()
+ def __call__(self, im, maxface=False):
+ bboxes, kpss, scores = self.facedet.detect(im)
+ face_num = bboxes.shape[0]
+
+ five_pts_list = []
+ scores_list = []
+ bboxes_list = []
+ for i in range(face_num):
+ five_pts_list.append(kpss[i].reshape(5,2))
+ scores_list.append(scores[i])
+ bboxes_list.append(bboxes[i])
+
+ if maxface and face_num>1:
+ max_idx = 0
+ max_area = (bboxes[0, 2])*(bboxes[0, 3])
+ for i in range(1, face_num):
+ area = (bboxes[i,2])*(bboxes[i,3])
+ if area>max_area:
+ max_idx = i
+ five_pts_list = [five_pts_list[max_idx]]
+ scores_list = [scores_list[max_idx]]
+ bboxes_list = [bboxes_list[max_idx]]
+
+ return five_pts_list, scores_list, bboxes_list
\ No newline at end of file
diff --git a/hymm_sp/data_kits/face_align/detface.py b/hymm_sp/data_kits/face_align/detface.py
new file mode 100644
index 0000000000000000000000000000000000000000..d04d2935b3bc298a0d5ee5e2e6021ef1d7e6db19
--- /dev/null
+++ b/hymm_sp/data_kits/face_align/detface.py
@@ -0,0 +1,283 @@
+# -*- coding: UTF-8 -*-
+import os
+import cv2
+import numpy as np
+import torch
+import torchvision
+
+
+def xyxy2xywh(x):
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
+ y[:, 2] = x[:, 2] - x[:, 0] # width
+ y[:, 3] = x[:, 3] - x[:, 1] # height
+ return y
+
+
+def xywh2xyxy(x):
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
+ return y
+
+
+def box_iou(box1, box2):
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+ """
+ Return intersection-over-union (Jaccard index) of boxes.
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+ Arguments:
+ box1 (Tensor[N, 4])
+ box2 (Tensor[M, 4])
+ Returns:
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
+ IoU values for every element in boxes1 and boxes2
+ """
+
+ def box_area(box):
+ # box = 4xn
+ return (box[2] - box[0]) * (box[3] - box[1])
+
+ area1 = box_area(box1.T)
+ area2 = box_area(box2.T)
+
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
+ torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+ # iou = inter / (area1 + area2 - inter)
+ return inter / (area1[:, None] + area2 - inter)
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2]] -= pad[0] # x padding
+ coords[:, [1, 3]] -= pad[1] # y padding
+ coords[:, :4] /= gain
+ clip_coords(coords, img0_shape)
+ return coords
+
+
+def clip_coords(boxes, img_shape):
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
+
+
+def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
+ # Rescale coords (xyxy) from img1_shape to img0_shape
+ if ratio_pad is None: # calculate from img0_shape
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
+ else:
+ gain = ratio_pad[0][0]
+ pad = ratio_pad[1]
+
+ coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
+ coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
+ coords[:, :10] /= gain
+ #clip_coords(coords, img0_shape)
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
+ coords[:, 4].clamp_(0, img0_shape[1]) # x3
+ coords[:, 5].clamp_(0, img0_shape[0]) # y3
+ coords[:, 6].clamp_(0, img0_shape[1]) # x4
+ coords[:, 7].clamp_(0, img0_shape[0]) # y4
+ coords[:, 8].clamp_(0, img0_shape[1]) # x5
+ coords[:, 9].clamp_(0, img0_shape[0]) # y5
+ return coords
+
+
+def show_results(img, xywh, conf, landmarks, class_num):
+ h,w,c = img.shape
+ tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
+ x1 = int(xywh[0] * w - 0.5 * xywh[2] * w)
+ y1 = int(xywh[1] * h - 0.5 * xywh[3] * h)
+ x2 = int(xywh[0] * w + 0.5 * xywh[2] * w)
+ y2 = int(xywh[1] * h + 0.5 * xywh[3] * h)
+ cv2.rectangle(img, (x1,y1), (x2, y2), (0,255,0), thickness=tl, lineType=cv2.LINE_AA)
+
+ clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
+
+ for i in range(5):
+ point_x = int(landmarks[2 * i] * w)
+ point_y = int(landmarks[2 * i + 1] * h)
+ cv2.circle(img, (point_x, point_y), tl+1, clors[i], -1)
+
+ tf = max(tl - 1, 1) # font thickness
+ label = str(conf)[:5]
+ cv2.putText(img, label, (x1, y1 - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
+ return img
+
+
+def make_divisible(x, divisor):
+ # Returns x evenly divisible by divisor
+ return (x // divisor) * divisor
+
+
+def non_max_suppression_face(prediction, conf_thres=0.5, iou_thres=0.45, classes=None, agnostic=False, labels=()):
+ """Performs Non-Maximum Suppression (NMS) on inference results
+ Returns:
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
+ """
+
+ nc = prediction.shape[2] - 15 # number of classes
+ xc = prediction[..., 4] > conf_thres # candidates
+
+ # Settings
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
+ # time_limit = 10.0 # seconds to quit after
+ redundant = True # require redundant detections
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
+ merge = False # use merge-NMS
+
+ # t = time.time()
+ output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
+ for xi, x in enumerate(prediction): # image index, image inference
+ # Apply constraints
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
+ x = x[xc[xi]] # confidence
+
+ # Cat apriori labels if autolabelling
+ if labels and len(labels[xi]):
+ l = labels[xi]
+ v = torch.zeros((len(l), nc + 15), device=x.device)
+ v[:, :4] = l[:, 1:5] # box
+ v[:, 4] = 1.0 # conf
+ v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
+ x = torch.cat((x, v), 0)
+
+ # If none remain process next image
+ if not x.shape[0]:
+ continue
+
+ # Compute conf
+ x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
+
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+ box = xywh2xyxy(x[:, :4])
+
+ # Detections matrix nx6 (xyxy, conf, landmarks, cls)
+ if multi_label:
+ i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
+ x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1)
+ else: # best class only
+ conf, j = x[:, 15:].max(1, keepdim=True)
+ x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
+
+ # Filter by class
+ if classes is not None:
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+ # If none remain process next image
+ n = x.shape[0] # number of boxes
+ if not n:
+ continue
+
+ # Batched NMS
+ c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
+ #if i.shape[0] > max_det: # limit detections
+ # i = i[:max_det]
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
+ weights = iou * scores[None] # box weights
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
+ if redundant:
+ i = i[iou.sum(1) > 1] # require redundancy
+
+ output[xi] = x[i]
+ # if (time.time() - t) > time_limit:
+ # break # time limit exceeded
+
+ return output
+
+
+class DetFace():
+ def __init__(self, pt_path, confThreshold=0.5, nmsThreshold=0.45, device='cuda'):
+ assert os.path.exists(pt_path)
+
+ self.inpSize = 416
+ self.conf_thres = confThreshold
+ self.iou_thres = nmsThreshold
+ self.test_device = torch.device(device if torch.cuda.is_available() else "cpu")
+ self.model = torch.jit.load(pt_path).to(self.test_device)
+ self.last_w = 416
+ self.last_h = 416
+ self.grids = None
+
+ @torch.no_grad()
+ def detect(self, srcimg):
+ # t0=time.time()
+
+ h0, w0 = srcimg.shape[:2] # orig hw
+ r = self.inpSize / min(h0, w0) # resize image to img_size
+ h1 = int(h0*r+31)//32*32
+ w1 = int(w0*r+31)//32*32
+
+ img = cv2.resize(srcimg, (w1,h1), interpolation=cv2.INTER_LINEAR)
+
+ # Convert
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # BGR to RGB
+
+ # Run inference
+ img = torch.from_numpy(img).to(self.test_device).permute(2,0,1)
+ img = img.float()/255 # uint8 to fp16/32 0-1
+ if img.ndimension() == 3:
+ img = img.unsqueeze(0)
+
+ # Inference
+ if h1 != self.last_h or w1 != self.last_w or self.grids is None:
+ grids = []
+ for scale in [8,16,32]:
+ ny = h1//scale
+ nx = w1//scale
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+ grid = torch.stack((xv, yv), 2).view((1,1,ny, nx, 2)).float()
+ grids.append(grid.to(self.test_device))
+ self.grids = grids
+ self.last_w = w1
+ self.last_h = h1
+
+ pred = self.model(img, self.grids).cpu()
+
+ # Apply NMS
+ det = non_max_suppression_face(pred, self.conf_thres, self.iou_thres)[0]
+ # Process detections
+ # det = pred[0]
+ bboxes = np.zeros((det.shape[0], 4))
+ kpss = np.zeros((det.shape[0], 5, 2))
+ scores = np.zeros((det.shape[0]))
+ # gn = torch.tensor([w0, h0, w0, h0]).to(pred) # normalization gain whwh
+ # gn_lks = torch.tensor([w0, h0, w0, h0, w0, h0, w0, h0, w0, h0]).to(pred) # normalization gain landmarks
+ det = det.cpu().numpy()
+
+ for j in range(det.shape[0]):
+ # xywh = (xyxy2xywh(det[j, :4].view(1, 4)) / gn).view(4).cpu().numpy()
+ bboxes[j, 0] = det[j, 0] * w0/w1
+ bboxes[j, 1] = det[j, 1] * h0/h1
+ bboxes[j, 2] = det[j, 2] * w0/w1 - bboxes[j, 0]
+ bboxes[j, 3] = det[j, 3] * h0/h1 - bboxes[j, 1]
+ scores[j] = det[j, 4]
+ # landmarks = (det[j, 5:15].view(1, 10) / gn_lks).view(5,2).cpu().numpy()
+ kpss[j, :, :] = det[j, 5:15].reshape(5, 2) * np.array([[w0/w1,h0/h1]])
+ # class_num = det[j, 15].cpu().numpy()
+ # orgimg = show_results(orgimg, xywh, conf, landmarks, class_num)
+ return bboxes, kpss, scores
diff --git a/hymm_sp/data_kits/ffmpeg_utils.py b/hymm_sp/data_kits/ffmpeg_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1bd40878a227cb86758ea761fb9114dc64ee7013
--- /dev/null
+++ b/hymm_sp/data_kits/ffmpeg_utils.py
@@ -0,0 +1,184 @@
+import skvideo
+# assert skvideo.__version__ >= "1.1.11"
+import os
+
+import skvideo.io
+import cv2
+
+# install the following packages: #
+# conda install -c conda-forge scikit-video ffmpeg #
+import os
+import torch
+import torchvision
+from PIL import Image
+import numpy as np
+from einops import rearrange
+
+
+
+class VideoUtils(object):
+ def __init__(self, video_path=None, output_video_path=None, bit_rate='origin', fps=25):
+ if video_path is not None:
+ meta_data = skvideo.io.ffprobe(video_path)
+ # avg_frame_rate = meta_data['video']['@r_frame_rate']
+ # a, b = avg_frame_rate.split('/')
+ # fps = float(a) / float(b)
+ # fps = 25
+ codec_name = 'libx264'
+ # codec_name = meta_data['video'].get('@codec_name')
+ # if codec_name=='hevc':
+ # codec_name='h264'
+ # profile = meta_data['video'].get('@profile')
+ color_space = meta_data['video'].get('@color_space')
+ color_transfer = meta_data['video'].get('@color_transfer')
+ color_primaries = meta_data['video'].get('@color_primaries')
+ color_range = meta_data['video'].get('@color_range')
+ pix_fmt = meta_data['video'].get('@pix_fmt')
+ if bit_rate=='origin':
+ bit_rate = meta_data['video'].get('@bit_rate')
+ else:
+ bit_rate=None
+ if pix_fmt is None:
+ pix_fmt = 'yuv420p'
+
+ reader_output_dict = {'-r': str(fps)}
+ writer_input_dict = {'-r': str(fps)}
+ writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
+ # if bit_rate is not None:
+ # writer_output_dict['-b:v'] = bit_rate
+ writer_output_dict['-crf'] = '17'
+
+ # if video has alpha channel, convert to bgra, uint16 to process
+ if pix_fmt.startswith('yuva'):
+ writer_input_dict['-pix_fmt'] = 'bgra64le'
+ reader_output_dict['-pix_fmt'] = 'bgra64le'
+ elif pix_fmt.endswith('le'):
+ writer_input_dict['-pix_fmt'] = 'bgr48le'
+ reader_output_dict['-pix_fmt'] = 'bgr48le'
+ else:
+ writer_input_dict['-pix_fmt'] = 'bgr24'
+ reader_output_dict['-pix_fmt'] = 'bgr24'
+
+ if color_range is not None:
+ writer_output_dict['-color_range'] = color_range
+ writer_input_dict['-color_range'] = color_range
+ if color_space is not None:
+ writer_output_dict['-colorspace'] = color_space
+ writer_input_dict['-colorspace'] = color_space
+ if color_primaries is not None:
+ writer_output_dict['-color_primaries'] = color_primaries
+ writer_input_dict['-color_primaries'] = color_primaries
+ if color_transfer is not None:
+ writer_output_dict['-color_trc'] = color_transfer
+ writer_input_dict['-color_trc'] = color_transfer
+
+ writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
+ reader_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
+ # writer_input_dict['-pix_fmt'] = 'bgr48le'
+ # reader_output_dict = {'-pix_fmt': 'bgr48le'}
+
+ # -s 1920x1080
+ # writer_input_dict['-s'] = '1920x1080'
+ # writer_output_dict['-s'] = '1920x1080'
+ # writer_input_dict['-s'] = '1080x1920'
+ # writer_output_dict['-s'] = '1080x1920'
+
+ print(writer_input_dict)
+ print(writer_output_dict)
+
+ self.reader = skvideo.io.FFmpegReader(video_path, outputdict=reader_output_dict)
+ else:
+
+ # fps = 25
+ codec_name = 'libx264'
+ bit_rate=None
+ pix_fmt = 'yuv420p'
+
+ reader_output_dict = {'-r': str(fps)}
+ writer_input_dict = {'-r': str(fps)}
+ writer_output_dict = {'-pix_fmt': pix_fmt, '-r': str(fps), '-vcodec':str(codec_name)}
+ # if bit_rate is not None:
+ # writer_output_dict['-b:v'] = bit_rate
+ writer_output_dict['-crf'] = '17'
+
+ # if video has alpha channel, convert to bgra, uint16 to process
+ if pix_fmt.startswith('yuva'):
+ writer_input_dict['-pix_fmt'] = 'bgra64le'
+ reader_output_dict['-pix_fmt'] = 'bgra64le'
+ elif pix_fmt.endswith('le'):
+ writer_input_dict['-pix_fmt'] = 'bgr48le'
+ reader_output_dict['-pix_fmt'] = 'bgr48le'
+ else:
+ writer_input_dict['-pix_fmt'] = 'bgr24'
+ reader_output_dict['-pix_fmt'] = 'bgr24'
+
+ writer_output_dict['-sws_flags'] = 'full_chroma_int+bitexact+accurate_rnd'
+ print(writer_input_dict)
+ print(writer_output_dict)
+
+ if output_video_path is not None:
+ self.writer = skvideo.io.FFmpegWriter(output_video_path, inputdict=writer_input_dict, outputdict=writer_output_dict, verbosity=1)
+
+ def getframes(self):
+ return self.reader.nextFrame()
+
+ def writeframe(self, frame):
+ if frame is None:
+ self.writer.close()
+ else:
+ self.writer.writeFrame(frame)
+
+
+def save_videos_from_pil(pil_images, path, fps=8):
+ save_fmt = ".mp4"
+ os.makedirs(os.path.dirname(path), exist_ok=True)
+ width, height = pil_images[0].size
+
+ if save_fmt == ".mp4":
+ video_cap = VideoUtils(output_video_path=path, fps=fps)
+ for pil_image in pil_images:
+ image_cv2 = np.array(pil_image)[:,:,[2,1,0]]
+ video_cap.writeframe(image_cv2)
+ video_cap.writeframe(None)
+
+ elif save_fmt == ".gif":
+ pil_images[0].save(
+ fp=path,
+ format="GIF",
+ append_images=pil_images[1:],
+ save_all=True,
+ duration=(1 / fps * 1000),
+ loop=0,
+ optimize=False,
+ lossless=True
+ )
+ else:
+ raise ValueError("Unsupported file type. Use .mp4 or .gif.")
+
+
+def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
+ videos = rearrange(videos, "b c t h w -> t b c h w")
+ height, width = videos.shape[-2:]
+ outputs = []
+
+ for x in videos:
+ x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
+ if rescale:
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
+ x = (x * 255).numpy().astype(np.uint8)
+ x = Image.fromarray(x)
+
+ outputs.append(x)
+
+ os.makedirs(os.path.dirname(path), exist_ok=True)
+
+ save_videos_from_pil(outputs, path, fps)
+
+def save_video(video, path: str, rescale=False, n_rows=6, fps=8):
+ outputs = []
+ for x in video:
+ x = Image.fromarray(x)
+ outputs.append(x)
+
+ save_videos_from_pil(outputs, path, fps)
\ No newline at end of file
diff --git a/hymm_sp/diffusion/__init__.py b/hymm_sp/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd7680ce5ecbb6b4cba1d9cf93dc8b14faca1d5e
--- /dev/null
+++ b/hymm_sp/diffusion/__init__.py
@@ -0,0 +1,30 @@
+from .pipelines import HunyuanVideoAudioPipeline
+from .schedulers import FlowMatchDiscreteScheduler
+
+
+def load_diffusion_pipeline(args, rank, vae, text_encoder, text_encoder_2, model, scheduler=None,
+ device=None, progress_bar_config=None):
+ """ Load the denoising scheduler for inference. """
+ if scheduler is None:
+ scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift_eval_video, reverse=args.flow_reverse, solver=args.flow_solver, )
+
+ # Only enable progress bar for rank 0
+ progress_bar_config = progress_bar_config or {'leave': True, 'disable': rank != 0}
+
+ pipeline = HunyuanVideoAudioPipeline(vae=vae,
+ text_encoder=text_encoder,
+ text_encoder_2=text_encoder_2,
+ transformer=model,
+ scheduler=scheduler,
+ # safety_checker=None,
+ # feature_extractor=None,
+ # requires_safety_checker=False,
+ progress_bar_config=progress_bar_config,
+ args=args,
+ )
+ if args.cpu_offload: # avoid oom
+ pass
+ else:
+ pipeline = pipeline.to(device)
+
+ return pipeline
\ No newline at end of file
diff --git a/hymm_sp/diffusion/__pycache__/__init__.cpython-310.pyc b/hymm_sp/diffusion/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0e88a3c5dae1493897c40953e2c7b72f1d71763a
Binary files /dev/null and b/hymm_sp/diffusion/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/diffusion/pipelines/__init__.py b/hymm_sp/diffusion/pipelines/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..94b060dbc1c93c351ab4f78feb0b9ae508dc33d2
--- /dev/null
+++ b/hymm_sp/diffusion/pipelines/__init__.py
@@ -0,0 +1 @@
+from .pipeline_hunyuan_video_audio import HunyuanVideoAudioPipeline
diff --git a/hymm_sp/diffusion/pipelines/__pycache__/__init__.cpython-310.pyc b/hymm_sp/diffusion/pipelines/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3bc26024921a532d16d17ebde9ac5d1951829806
Binary files /dev/null and b/hymm_sp/diffusion/pipelines/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/diffusion/pipelines/__pycache__/pipeline_hunyuan_video_audio.cpython-310.pyc b/hymm_sp/diffusion/pipelines/__pycache__/pipeline_hunyuan_video_audio.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2ac441731cb049dc2c72f318b6ba2a1a0bbb7fee
Binary files /dev/null and b/hymm_sp/diffusion/pipelines/__pycache__/pipeline_hunyuan_video_audio.cpython-310.pyc differ
diff --git a/hymm_sp/diffusion/pipelines/pipeline_hunyuan_video_audio.py b/hymm_sp/diffusion/pipelines/pipeline_hunyuan_video_audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9086e08156e7e8c5a110b2473d73e805b42d960
--- /dev/null
+++ b/hymm_sp/diffusion/pipelines/pipeline_hunyuan_video_audio.py
@@ -0,0 +1,1363 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+#
+# Modified from diffusers==0.29.2
+#
+# ==============================================================================
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Union, Tuple
+import numpy as np
+import torch
+from packaging import version
+from diffusers.utils import BaseOutput
+from dataclasses import dataclass
+from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
+from diffusers.configuration_utils import FrozenDict
+from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
+from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
+from diffusers.models import AutoencoderKL, ImageProjection
+from diffusers.models.lora import adjust_lora_scale_text_encoder
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import (
+ USE_PEFT_BACKEND,
+ deprecate,
+ logging,
+ replace_example_docstring,
+ scale_lora_layers,
+ unscale_lora_layers,
+)
+from diffusers.utils.torch_utils import randn_tensor
+from diffusers.pipelines.pipeline_utils import DiffusionPipeline
+
+from hymm_sp.constants import PRECISION_TO_TYPE
+from hymm_sp.vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
+from hymm_sp.text_encoder import TextEncoder
+from einops import rearrange
+from ...modules import HYVideoDiffusionTransformer
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+EXAMPLE_DOC_STRING = """"""
+
+
+def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
+ """
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
+ """
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
+ # rescale the results from guidance (fixes overexposure)
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
+ return noise_cfg
+
+
+def retrieve_timesteps(
+ scheduler,
+ num_inference_steps: Optional[int] = None,
+ device: Optional[Union[str, torch.device]] = None,
+ timesteps: Optional[List[int]] = None,
+ sigmas: Optional[List[float]] = None,
+ **kwargs,
+):
+ """
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
+
+ Args:
+ scheduler (`SchedulerMixin`):
+ The scheduler to get timesteps from.
+ num_inference_steps (`int`):
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
+ must be `None`.
+ device (`str` or `torch.device`, *optional*):
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
+ `num_inference_steps` and `sigmas` must be `None`.
+ sigmas (`List[float]`, *optional*):
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
+ `num_inference_steps` and `timesteps` must be `None`.
+
+ Returns:
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
+ second element is the number of inference steps.
+ """
+ if timesteps is not None and sigmas is not None:
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
+ if timesteps is not None:
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accepts_timesteps:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" timestep schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ elif sigmas is not None:
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+ if not accept_sigmas:
+ raise ValueError(
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
+ )
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ num_inference_steps = len(timesteps)
+ else:
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
+ timesteps = scheduler.timesteps
+ return timesteps, num_inference_steps
+
+@dataclass
+class HunyuanVideoPipelineOutput(BaseOutput):
+ videos: Union[torch.Tensor, np.ndarray]
+
+
+class HunyuanVideoAudioPipeline(DiffusionPipeline):
+ r"""
+ Pipeline for text-to-video generation using HunyuanVideo.
+
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
+
+ Args:
+ vae ([`AutoencoderKL`]):
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
+ text_encoder ([`TextEncoder`]):
+ Frozen text-encoder.
+ text_encoder_2 ([`TextEncoder`]):
+ Frozen text-encoder_2.
+ transformer ([`HYVideoDiffusionTransformer`]):
+ A `HYVideoDiffusionTransformer` to denoise the encoded video latents.
+ scheduler ([`SchedulerMixin`]):
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents.
+ """
+
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
+ _optional_components = ["text_encoder_2"]
+ _exclude_from_cpu_offload = ["transformer"]
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
+
+ def __init__(
+ self,
+ vae: AutoencoderKL,
+ text_encoder: TextEncoder,
+ transformer: HYVideoDiffusionTransformer,
+ scheduler: KarrasDiffusionSchedulers,
+ text_encoder_2: Optional[TextEncoder] = None,
+ progress_bar_config: Dict[str, Any] = None,
+ args=None,
+ ):
+ super().__init__()
+
+ # ==========================================================================================
+ if progress_bar_config is None:
+ progress_bar_config = {}
+ if not hasattr(self, '_progress_bar_config'):
+ self._progress_bar_config = {}
+ self._progress_bar_config.update(progress_bar_config)
+
+ self.args = args
+ # ==========================================================================================
+
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
+ " file"
+ )
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["steps_offset"] = 1
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
+ deprecation_message = (
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
+ )
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
+ new_config = dict(scheduler.config)
+ new_config["clip_sample"] = False
+ scheduler._internal_dict = FrozenDict(new_config)
+
+ self.register_modules(
+ vae=vae,
+ text_encoder=text_encoder,
+ transformer=transformer,
+ scheduler=scheduler,
+ text_encoder_2=text_encoder_2
+ )
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+
+ def encode_prompt(
+ self,
+ prompt,
+ name,
+ device,
+ num_videos_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt=None,
+ pixel_value_llava: Optional[torch.Tensor] = None,
+ uncond_pixel_value_llava: Optional[torch.Tensor] = None,
+ prompt_embeds: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
+ negative_attention_mask: Optional[torch.Tensor] = None,
+ lora_scale: Optional[float] = None,
+ clip_skip: Optional[int] = None,
+ text_encoder: Optional[TextEncoder] = None,
+ data_type: Optional[str] = "image",
+ ):
+ r"""
+ Encodes the prompt into text encoder hidden states.
+
+ Args:
+ prompt (`str` or `List[str]`, *optional*):
+ prompt to be encoded
+ device: (`torch.device`):
+ torch device
+ num_videos_per_prompt (`int`):
+ number of images that should be generated per prompt
+ do_classifier_free_guidance (`bool`):
+ whether to use classifier free guidance or not
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ pixel_value_llava (`torch.Tensor`, *optional*):
+ The image tensor for llava.
+ uncond_pixel_value_llava (`torch.Tensor`, *optional*):
+ The image tensor for llava. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+ less than `1`).
+ prompt_embeds (`torch.Tensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+ provided, text embeddings will be generated from `prompt` input argument.
+ attention_mask (`torch.Tensor`, *optional*):
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+ argument.
+ negative_attention_mask (`torch.Tensor`, *optional*):
+ lora_scale (`float`, *optional*):
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+ clip_skip (`int`, *optional*):
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+ the output of the pre-final layer will be used for computing the prompt embeddings.
+ text_encoder (TextEncoder, *optional*):
+ """
+ if text_encoder is None:
+ text_encoder = self.text_encoder
+
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
+ self._lora_scale = lora_scale
+
+ # dynamically adjust the LoRA scale
+ if not USE_PEFT_BACKEND:
+ adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
+ else:
+ scale_lora_layers(text_encoder.model, lora_scale)
+
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ if prompt_embeds is None:
+ # textual inversion: process multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
+ text_inputs = text_encoder.text2tokens(prompt, data_type=data_type, name=name)
+
+ if pixel_value_llava is not None:
+ text_inputs['pixel_value_llava'] = pixel_value_llava
+ text_inputs['attention_mask'] = torch.cat([text_inputs['attention_mask'], torch.ones((1, 575 * len(pixel_value_llava))).to(text_inputs['attention_mask'])], dim=1)
+
+ if clip_skip is None:
+ prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
+ prompt_embeds = prompt_outputs.hidden_state
+ else:
+ prompt_outputs = text_encoder.encode(text_inputs, output_hidden_states=True, data_type=data_type)
+ # Access the `hidden_states` first, that contains a tuple of
+ # all the hidden states from the encoder layers. Then index into
+ # the tuple to access the hidden states from the desired layer.
+ prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
+ # We also need to apply the final LayerNorm here to not mess with the
+ # representations. The `last_hidden_states` that we typically use for
+ # obtaining the final prompt representations passes through the LayerNorm
+ # layer.
+ prompt_embeds = text_encoder.model.text_model.final_layer_norm(prompt_embeds)
+
+ attention_mask = prompt_outputs.attention_mask
+ if attention_mask is not None:
+ attention_mask = attention_mask.to(device)
+ bs_embed, seq_len = attention_mask.shape
+ attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
+ attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len)
+
+ if text_encoder is not None:
+ prompt_embeds_dtype = text_encoder.dtype
+ elif self.transformer is not None:
+ prompt_embeds_dtype = self.transformer.dtype
+ else:
+ prompt_embeds_dtype = prompt_embeds.dtype
+
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+ if prompt_embeds.ndim == 2:
+ bs_embed, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
+ else:
+ bs_embed, seq_len, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ # textual inversion: process multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, text_encoder.tokenizer)
+ uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
+ if uncond_pixel_value_llava is not None:
+ uncond_input['pixel_value_llava'] = uncond_pixel_value_llava
+ uncond_input['attention_mask'] = torch.cat([uncond_input['attention_mask'], torch.ones((1, 575 * len(uncond_pixel_value_llava))).to(uncond_input['attention_mask'])], dim=1)
+
+ negative_prompt_outputs = text_encoder.encode(uncond_input, data_type=data_type)
+ negative_prompt_embeds = negative_prompt_outputs.hidden_state
+
+ negative_attention_mask = negative_prompt_outputs.attention_mask
+ if negative_attention_mask is not None:
+ negative_attention_mask = negative_attention_mask.to(device)
+ _, seq_len = negative_attention_mask.shape
+ negative_attention_mask = negative_attention_mask.repeat(1, num_videos_per_prompt)
+ negative_attention_mask = negative_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
+
+ if do_classifier_free_guidance:
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = negative_prompt_embeds.shape[1]
+
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+ if negative_prompt_embeds.ndim == 2:
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
+ else:
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
+
+ if text_encoder is not None:
+ if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(text_encoder.model, lora_scale)
+
+ return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
+
+ def encode_prompt_audio_text_base(
+ self,
+ prompt,
+ uncond_prompt,
+ pixel_value_llava,
+ uncond_pixel_value_llava,
+ device,
+ num_images_per_prompt,
+ do_classifier_free_guidance,
+ negative_prompt=None,
+ prompt_embeds: Optional[torch.Tensor] = None,
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
+ lora_scale: Optional[float] = None,
+ clip_skip: Optional[int] = None,
+ text_encoder: Optional[TextEncoder] = None,
+ data_type: Optional[str] = "image",
+ ):
+ if text_encoder is None:
+ text_encoder = self.text_encoder
+
+ # set lora scale so that monkey patched LoRA
+ # function of text encoder can correctly access it
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
+ self._lora_scale = lora_scale
+
+ # dynamically adjust the LoRA scale
+ if not USE_PEFT_BACKEND:
+ adjust_lora_scale_text_encoder(text_encoder.model, lora_scale)
+ else:
+ scale_lora_layers(text_encoder.model, lora_scale)
+
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ prompt_embeds = None
+
+ if prompt_embeds is None:
+ # textual inversion: process multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer)
+ text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) # data_type: video, text_inputs: {'input_ids', 'attention_mask'}
+
+ text_keys = ['input_ids', 'attention_mask']
+
+ if pixel_value_llava is not None:
+ text_inputs['pixel_value_llava'] = pixel_value_llava
+ text_inputs['attention_mask'] = torch.cat([text_inputs['attention_mask'], torch.ones((1, 575)).to(text_inputs['attention_mask'])], dim=1)
+
+
+ if clip_skip is None:
+ prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
+ prompt_embeds = prompt_outputs.hidden_state
+ else:
+ prompt_outputs = text_encoder.encode(text_inputs, output_hidden_states=True, data_type=data_type)
+ # Access the `hidden_states` first, that contains a tuple of
+ # all the hidden states from the encoder layers. Then index into
+ # the tuple to access the hidden states from the desired layer.
+ prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)]
+ # We also need to apply the final LayerNorm here to not mess with the
+ # representations. The `last_hidden_states` that we typically use for
+ # obtaining the final prompt representations passes through the LayerNorm
+ # layer.
+ prompt_embeds = text_encoder.model.text_model.final_layer_norm(prompt_embeds)
+
+ attention_mask = prompt_outputs.attention_mask
+ if attention_mask is not None:
+ attention_mask = attention_mask.to(device)
+ bs_embed, seq_len = attention_mask.shape
+ attention_mask = attention_mask.repeat(1, num_images_per_prompt)
+ attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, seq_len)
+
+ if text_encoder is not None:
+ prompt_embeds_dtype = text_encoder.dtype
+ elif self.unet is not None:
+ prompt_embeds_dtype = self.unet.dtype
+ else:
+ prompt_embeds_dtype = prompt_embeds.dtype
+
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+ if prompt_embeds.ndim == 2:
+ bs_embed, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, -1)
+ else:
+ bs_embed, seq_len, _ = prompt_embeds.shape
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+ # get unconditional embeddings for classifier free guidance
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
+ uncond_tokens: List[str]
+ if negative_prompt is None:
+ uncond_tokens = [""] * batch_size
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
+ raise TypeError(
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+ f" {type(prompt)}."
+ )
+ elif isinstance(negative_prompt, str):
+ uncond_tokens = [negative_prompt]
+ elif batch_size != len(negative_prompt):
+ raise ValueError(
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+ " the batch size of `prompt`."
+ )
+ else:
+ uncond_tokens = negative_prompt
+
+ # textual inversion: process multi-vector tokens if necessary
+ if isinstance(self, TextualInversionLoaderMixin):
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, text_encoder.tokenizer)
+ # max_length = prompt_embeds.shape[1]
+ uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type)
+
+ # if hasattr(text_encoder.model.config, "use_attention_mask") and text_encoder.model.config.use_attention_mask:
+ # attention_mask = uncond_input.attention_mask.to(device)
+ # else:
+ # attention_mask = None
+ if uncond_pixel_value_llava is not None:
+ uncond_input['pixel_value_llava'] = uncond_pixel_value_llava
+ uncond_input['attention_mask'] = torch.cat([uncond_input['attention_mask'], torch.ones((1, 575)).to(uncond_input['attention_mask'])], dim=1)
+
+ negative_prompt_outputs = text_encoder.encode(uncond_input, data_type=data_type)
+ negative_prompt_embeds = negative_prompt_outputs.hidden_state
+
+ negative_attention_mask = negative_prompt_outputs.attention_mask
+ if negative_attention_mask is not None:
+ negative_attention_mask = negative_attention_mask.to(device)
+ _, seq_len = negative_attention_mask.shape
+ negative_attention_mask = negative_attention_mask.repeat(1, num_images_per_prompt)
+ negative_attention_mask = negative_attention_mask.view(batch_size * num_images_per_prompt, seq_len)
+
+ if do_classifier_free_guidance:
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+ seq_len = negative_prompt_embeds.shape[1]
+
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+ if negative_prompt_embeds.ndim == 2:
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
+ else:
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+ if text_encoder is not None:
+ if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
+ # Retrieve the original scale by scaling back the LoRA layers
+ unscale_lora_layers(text_encoder.model, lora_scale)
+
+ return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
+
+ def decode_latents(self, latents, enable_tiling=True):
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
+ deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
+
+ latents = 1 / self.vae.config.scaling_factor * latents
+ if enable_tiling:
+ self.vae.enable_tiling()
+ image = self.vae.decode(latents, return_dict=False)[0]
+ self.vae.disable_tiling()
+ else:
+ image = self.vae.decode(latents, return_dict=False)[0]
+ image = (image / 2 + 0.5).clamp(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
+ if image.ndim==4: image = image.cpu().permute(0, 2, 3, 1).float()
+ else: image = image.cpu().float()
+ return image
+
+ def prepare_extra_func_kwargs(self, func, kwargs):
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+ # and should be between [0, 1]
+ extra_step_kwargs = {}
+
+ for k, v in kwargs.items():
+ accepts = k in set(inspect.signature(func).parameters.keys())
+ if accepts:
+ extra_step_kwargs[k] = v
+ return extra_step_kwargs
+
+ def check_inputs(
+ self,
+ prompt,
+ height,
+ width,
+ frame,
+ callback_steps,
+ pixel_value_llava=None,
+ uncond_pixel_value_llava=None,
+ negative_prompt=None,
+ prompt_embeds=None,
+ negative_prompt_embeds=None,
+ callback_on_step_end_tensor_inputs=None,
+ vae_ver='88-4c-sd'
+ ):
+ if height % 8 != 0 or width % 8 != 0:
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+ if frame is not None:
+ if '884' in vae_ver:
+ if frame!=1 and (frame-1)%4!=0:
+ raise ValueError(f'`frame` has to be 1 or a multiple of 4 but is {frame}.')
+ elif '888' in vae_ver:
+ if frame!=1 and (frame-1)%8!=0:
+ raise ValueError(f'`frame` has to be 1 or a multiple of 8 but is {frame}.')
+
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
+ raise ValueError(
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+ f" {type(callback_steps)}."
+ )
+ if callback_on_step_end_tensor_inputs is not None and not all(
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+ ):
+ raise ValueError(
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+ )
+
+ if prompt is not None and prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+ " only forward one of the two."
+ )
+ elif prompt is None and prompt_embeds is None:
+ raise ValueError(
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+ )
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+ if negative_prompt is not None and negative_prompt_embeds is not None:
+ raise ValueError(
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+ )
+
+ if pixel_value_llava is not None and uncond_pixel_value_llava is not None:
+ if len(pixel_value_llava) != len(uncond_pixel_value_llava):
+ raise ValueError(
+ "`pixel_value_llava` and `uncond_pixel_value_llava` must have the same length when passed directly, but"
+ f" got: `pixel_value_llava` {len(pixel_value_llava)} != `uncond_pixel_value_llava`"
+ f" {len(uncond_pixel_value_llava)}."
+ )
+
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
+ raise ValueError(
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+ f" {negative_prompt_embeds.shape}."
+ )
+
+ def get_timesteps(self, num_inference_steps, strength, device):
+ # get the original timestep using init_timestep
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+ t_start = max(num_inference_steps - init_timestep, 0)
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
+ if hasattr(self.scheduler, "set_begin_index"):
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
+
+ return timesteps.to(device), num_inference_steps - t_start
+
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, frame, dtype, device, generator, latents=None, ref_latents=None, timestep=None):
+ shape = (
+ batch_size,
+ num_channels_latents,
+ frame,
+ int(height) // self.vae_scale_factor,
+ int(width) // self.vae_scale_factor,
+ )
+ if isinstance(generator, list) and len(generator) != batch_size:
+ raise ValueError(
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+ )
+
+ if latents is None:
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+ else:
+ latents = latents.to(device)
+
+
+ if timestep is not None:
+ init_latents = ref_latents.clone().repeat(1,1,frame,1,1).to(device).to(dtype)
+ latents = latents
+
+ # Check existence to make it compatible with FlowMatchEulerDiscreteScheduler
+ if hasattr(self.scheduler, "init_noise_sigma"):
+ latents = latents * self.scheduler.init_noise_sigma
+
+ return latents
+
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
+ def get_guidance_scale_embedding(
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
+ ) -> torch.Tensor:
+ """
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
+
+ Args:
+ w (`torch.Tensor`):
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
+ embedding_dim (`int`, *optional*, defaults to 512):
+ Dimension of the embeddings to generate.
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
+ Data type of the generated embeddings.
+
+ Returns:
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
+ """
+ assert len(w.shape) == 1
+ w = w * 1000.0
+
+ half_dim = embedding_dim // 2
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
+ emb = w.to(dtype)[:, None] * emb[None, :]
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+ if embedding_dim % 2 == 1: # zero pad
+ emb = torch.nn.functional.pad(emb, (0, 1))
+ assert emb.shape == (w.shape[0], embedding_dim)
+ return emb
+
+ @property
+ def guidance_scale(self):
+ return self._guidance_scale
+
+ @property
+ def guidance_rescale(self):
+ return self._guidance_rescale
+
+ @property
+ def clip_skip(self):
+ return self._clip_skip
+
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+ # corresponds to doing no classifier free guidance.
+ @property
+ def do_classifier_free_guidance(self):
+ # return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
+ return self._guidance_scale > 1
+
+ @property
+ def cross_attention_kwargs(self):
+ return self._cross_attention_kwargs
+
+ @property
+ def num_timesteps(self):
+ return self._num_timesteps
+
+ @property
+ def interrupt(self):
+ return self._interrupt
+
+ @torch.no_grad()
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
+ def __call__(
+ self,
+ prompt: Union[str, List[str]],
+
+ ref_latents: Union[torch.Tensor], # [1, 16, 1, h//8, w//8]
+ uncond_ref_latents: Union[torch.Tensor],
+ pixel_value_llava: Union[torch.Tensor], # [1, 3, 336, 336]
+ uncond_pixel_value_llava: Union[torch.Tensor],
+ face_masks: Union[torch.Tensor], # [b f h w]
+ audio_prompts: Union[torch.Tensor],
+ uncond_audio_prompts: Union[torch.Tensor],
+ motion_exp: Union[torch.Tensor],
+ motion_pose: Union[torch.Tensor],
+ fps: Union[torch.Tensor],
+
+ height: int,
+ width: int,
+ frame: int,
+ data_type: str = "video",
+ num_inference_steps: int = 50,
+ timesteps: List[int] = None,
+ sigmas: List[float] = None,
+ guidance_scale: float = 7.5,
+ negative_prompt: Optional[Union[str, List[str]]] = None,
+ num_videos_per_prompt: Optional[int] = 1,
+ eta: float = 0.0,
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+ latents: Optional[torch.Tensor] = None,
+ prompt_embeds: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
+ negative_attention_mask: Optional[torch.Tensor] = None,
+ output_type: Optional[str] = "pil",
+ return_dict: bool = True,
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+ guidance_rescale: float = 0.0,
+ clip_skip: Optional[int] = None,
+ callback_on_step_end: Optional[
+ Union[
+ Callable[[int, int, Dict], None],
+ PipelineCallback,
+ MultiPipelineCallbacks,
+ ]
+ ] = None,
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+ freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
+ vae_ver: str = "88-4c-sd",
+ enable_tiling: bool = False,
+ n_tokens: Optional[int] = None,
+ embedded_guidance_scale: Optional[float] = None,
+ **kwargs,
+ ):
+ r"""
+ The call function to the pipeline for generation.
+
+ Args:
+ prompt (`str` or `List[str]`):
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
+ height (`int`):
+ The height in pixels of the generated image.
+ width (`int`):
+ The width in pixels of the generated image.
+ video_length (`int`):
+ The number of frames in the generated video.
+ num_inference_steps (`int`, *optional*, defaults to 50):
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+ expense of slower inference.
+ timesteps (`List[int]`, *optional*):
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
+ passed will be used. Must be in descending order.
+ sigmas (`List[float]`, *optional*):
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
+ will be used.
+ guidance_scale (`float`, *optional*, defaults to 7.5):
+ A higher guidance scale value encourages the model to generate images closely linked to the text
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
+ negative_prompt (`str` or `List[str]`, *optional*):
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
+ The number of images to generate per prompt.
+ eta (`float`, *optional*, defaults to 0.0):
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
+ generation deterministic.
+ latents (`torch.Tensor`, *optional*):
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+ tensor is generated by sampling using the supplied random `generator`.
+ prompt_embeds (`torch.Tensor`, *optional*):
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
+ provided, text embeddings are generated from the `prompt` input argument.
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
+
+ output_type (`str`, *optional*, defaults to `"pil"`):
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a
+ plain tuple.
+ cross_attention_kwargs (`dict`, *optional*):
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
+ Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
+ using zero terminal SNR.
+ clip_skip (`int`, *optional*):
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+ the output of the pre-final layer will be used for computing the prompt embeddings.
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+ `._callback_tensor_inputs` attribute of your pipeline class.
+
+ Examples:
+
+ Returns:
+ [`~HunyuanVideoPipelineOutput`] or `tuple`:
+ If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned,
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
+ "not-safe-for-work" (nsfw) content.
+ """
+ callback = kwargs.pop("callback", None)
+ callback_steps = kwargs.pop("callback_steps", None)
+ if callback is not None:
+ deprecate(
+ "callback",
+ "1.0.0",
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
+ )
+ if callback_steps is not None:
+ deprecate(
+ "callback_steps",
+ "1.0.0",
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
+ )
+
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
+
+ cpu_offload = kwargs.get("cpu_offload", 0)
+
+ # 0. Default height and width to transformer
+ # height = height or self.transformer.config.sample_size * self.vae_scale_factor
+ # width = width or self.transformer.config.sample_size * self.vae_scale_factor
+ # to deal with lora scaling and other possible forward hooks
+
+ # 1. Check inputs. Raise error if not correct
+ self.check_inputs(
+ prompt,
+ height,
+ width,
+ frame,
+ callback_steps,
+ pixel_value_llava,
+ uncond_pixel_value_llava,
+ negative_prompt,
+ prompt_embeds,
+ negative_prompt_embeds,
+ callback_on_step_end_tensor_inputs,
+ vae_ver=vae_ver
+ )
+
+ self._guidance_scale = guidance_scale
+ self.start_cfg_scale = guidance_scale
+ self._guidance_rescale = guidance_rescale
+ self._clip_skip = clip_skip
+ self._cross_attention_kwargs = cross_attention_kwargs
+ self._interrupt = False
+
+ # 2. Define call parameters
+ if prompt is not None and isinstance(prompt, str):
+ batch_size = 1
+ elif prompt is not None and isinstance(prompt, list):
+ batch_size = len(prompt)
+ else:
+ batch_size = prompt_embeds.shape[0]
+
+ device = self._execution_device
+
+ # 3. Encode input prompt
+ lora_scale = (
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
+ )
+
+
+ # ========== Encode text prompt (image prompt) ==========
+ prompt_embeds, negative_prompt_embeds, prompt_mask, negative_prompt_mask = \
+ self.encode_prompt_audio_text_base(
+ prompt=prompt,
+ uncond_prompt=negative_prompt,
+ pixel_value_llava=pixel_value_llava,
+ uncond_pixel_value_llava=uncond_pixel_value_llava,
+ device=device,
+ num_images_per_prompt=num_videos_per_prompt,
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
+ negative_prompt=negative_prompt,
+ prompt_embeds=prompt_embeds,
+ negative_prompt_embeds=negative_prompt_embeds,
+ lora_scale=lora_scale,
+ clip_skip=self.clip_skip,
+ text_encoder=self.text_encoder,
+ data_type=data_type,
+ # **kwargs
+ )
+ if self.text_encoder_2 is not None:
+ prompt_embeds_2, negative_prompt_embeds_2, prompt_mask_2, negative_prompt_mask_2 = \
+ self.encode_prompt_audio_text_base(
+ prompt=prompt,
+ uncond_prompt=negative_prompt,
+ pixel_value_llava=None,
+ uncond_pixel_value_llava=None,
+ device=device,
+ num_images_per_prompt=num_videos_per_prompt,
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
+ negative_prompt=negative_prompt,
+ prompt_embeds=None,
+ negative_prompt_embeds=None,
+ lora_scale=lora_scale,
+ clip_skip=self.clip_skip,
+ text_encoder=self.text_encoder_2,
+ # **kwargs
+ )
+ else:
+ prompt_embeds_2 = None
+ negative_prompt_embeds_2 = None
+ prompt_mask_2 = None
+ negative_prompt_mask_2 = None
+
+
+ # For classifier free guidance, we need to do two forward passes.
+ # Here we concatenate the unconditional and text embeddings into a single batch
+ # to avoid doing two forward passes
+ if self.do_classifier_free_guidance:
+ prompt_embeds_input = torch.cat([negative_prompt_embeds, prompt_embeds])
+ if prompt_mask is not None:
+ prompt_mask_input = torch.cat([negative_prompt_mask, prompt_mask])
+ if prompt_embeds_2 is not None:
+ prompt_embeds_2_input = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
+ if prompt_mask_2 is not None:
+ prompt_mask_2_input = torch.cat([negative_prompt_mask_2, prompt_mask_2])
+
+ if self.do_classifier_free_guidance:
+ ref_latents = torch.cat([ref_latents, ref_latents], dim=0)
+
+
+ # 4. Prepare timesteps
+ extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs(
+ self.scheduler.set_timesteps, {"n_tokens": n_tokens}
+ )
+ timesteps, num_inference_steps = retrieve_timesteps(
+ self.scheduler, num_inference_steps, device, timesteps, sigmas, **extra_set_timesteps_kwargs,
+ )
+
+ video_length = audio_prompts.shape[1] // 4 * 4 + 1
+ if "884" in vae_ver:
+ video_length = (video_length - 1) // 4 + 1
+ elif "888" in vae_ver:
+ video_length = (video_length - 1) // 8 + 1
+ else:
+ video_length = video_length
+
+
+ # 5. Prepare latent variables
+ num_channels_latents = self.transformer.config.in_channels
+ infer_length = (audio_prompts.shape[1] // 128 + 1) * 32 + 1
+ latents = self.prepare_latents(
+ batch_size * num_videos_per_prompt,
+ num_channels_latents,
+ height,
+ width,
+ infer_length,
+ prompt_embeds.dtype,
+ device,
+ generator,
+ latents,
+ ref_latents[-1:],
+ timesteps[:1]
+ )
+
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+ extra_step_kwargs = self.prepare_extra_func_kwargs(
+ self.scheduler.step, {"generator": generator, "eta": eta},
+ )
+
+ target_dtype = PRECISION_TO_TYPE[self.args.precision]
+ autocast_enabled = (target_dtype != torch.float32) and not self.args.val_disable_autocast
+ vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision]
+ vae_autocast_enabled = (vae_dtype != torch.float32) and not self.args.val_disable_autocast
+
+ # 7. Denoising loop
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+ self._num_timesteps = len(timesteps)
+
+ latents_all = latents.clone()
+ pad_audio_length = (audio_prompts.shape[1] // 128 + 1) * 128 + 4 - audio_prompts.shape[1]
+ audio_prompts_all = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :pad_audio_length])], dim=1)
+
+
+ shift = 0
+ shift_offset = 10
+ frames_per_batch = 33
+ self.cache_tensor = None
+
+ """ If the total length is shorter than 129, shift is not required """
+ if video_length == 33 or infer_length == 33:
+ infer_length = 33
+ shift_offset = 0
+ latents_all = latents_all[:, :, :33]
+ audio_prompts_all = audio_prompts_all[:, :132]
+
+ if cpu_offload: torch.cuda.empty_cache()
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
+ for i, t in enumerate(timesteps):
+ if self.interrupt:
+ continue
+
+ # init
+ pred_latents = torch.zeros_like(
+ latents_all,
+ dtype=latents_all.dtype,
+ )
+ counter = torch.zeros(
+ (latents_all.shape[0], latents_all.shape[1], infer_length, 1, 1),
+ dtype=latents_all.dtype,
+ ).to(device=latents_all.device)
+
+ for index_start in range(0, infer_length, frames_per_batch):
+ self.scheduler._step_index = None
+
+ index_start = index_start - shift
+
+ idx_list = [ii % latents_all.shape[2] for ii in range(index_start, index_start + frames_per_batch)]
+ latents = latents_all[:, :, idx_list].clone()
+
+ idx_list_audio = [ii % audio_prompts_all.shape[1] for ii in range(index_start * 4, (index_start + frames_per_batch) * 4 - 3)]
+ audio_prompts = audio_prompts_all[:, idx_list_audio].clone()
+
+ # expand the latents if we are doing classifier free guidance
+ if self.do_classifier_free_guidance:
+ latent_model_input = torch.cat([latents] * 2)
+ else:
+ latent_model_input = latents
+
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+ if self.do_classifier_free_guidance:
+ if i < 10:
+ self._guidance_scale = (1 - i / len(timesteps)) * (self.start_cfg_scale - 2) + 2
+ audio_prompts_input = torch.cat([uncond_audio_prompts, audio_prompts], dim=0)
+ face_masks_input = torch.cat([face_masks * 0.6] * 2, dim=0)
+ else:
+ # define 10-50 step cfg
+ self._guidance_scale = (1 - i / len(timesteps)) * (6.5 - 3.5) + 3.5 # 5-2 +2
+
+ prompt_embeds_input = torch.cat([prompt_embeds, prompt_embeds])
+ if prompt_mask is not None:
+ prompt_mask_input = torch.cat([prompt_mask, prompt_mask])
+ if prompt_embeds_2 is not None:
+ prompt_embeds_2_input = torch.cat([prompt_embeds_2, prompt_embeds_2])
+ if prompt_mask_2 is not None:
+ prompt_mask_2_input = torch.cat([prompt_mask_2, prompt_mask_2])
+ audio_prompts_input = torch.cat([uncond_audio_prompts, audio_prompts], dim=0)
+ face_masks_input = torch.cat([face_masks] * 2, dim=0)
+
+ motion_exp_input = torch.cat([motion_exp] * 2, dim=0)
+ motion_pose_input = torch.cat([motion_pose] * 2, dim=0)
+ fps_input = torch.cat([fps] * 2, dim=0)
+
+ else:
+ audio_prompts_input = audio_prompts
+ face_masks_input = face_masks
+ motion_exp_input = motion_exp
+ motion_pose_input = motion_pose
+ fps_input = fps
+
+ t_expand = t.repeat(latent_model_input.shape[0])
+ guidance_expand = None
+
+ with torch.autocast(device_type="cuda", dtype=target_dtype, enabled=autocast_enabled):
+
+ no_cache_steps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] + list(range(15, 42, 5)) + [41, 42, 43, 44, 45, 46, 47, 48, 49]
+ img_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * latent_model_input.shape[-3]
+ img_ref_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * (latent_model_input.shape[-3]+1)
+ if i in no_cache_steps:
+ is_cache = False
+
+ if latent_model_input.shape[-1]*latent_model_input.shape[-2]>64*112 and cpu_offload:
+ if i==0:
+ print(f'cpu_offload={cpu_offload} and {latent_model_input.shape[-2:]} is large, split infer noise-pred')
+
+ additional_kwargs = {
+ "motion_exp": motion_exp_input[:1],
+ "motion_pose": motion_pose_input[:1],
+ "fps": fps_input[:1],
+ "audio_prompts": audio_prompts_input[:1],
+ "face_mask": face_masks_input[:1]
+ }
+ noise_pred_uncond = self.transformer(latent_model_input[:1], t_expand[:1], ref_latents=ref_latents[:1], text_states=prompt_embeds_input[:1], text_mask=prompt_mask_input[:1], text_states_2=prompt_embeds_2_input[:1], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
+ uncond_cache_tensor = self.transformer.cache_out
+ torch.cuda.empty_cache()
+
+ additional_kwargs = {
+ "motion_exp": motion_exp_input[1:],
+ "motion_pose": motion_pose_input[1:],
+ "fps": fps_input[1:],
+ "audio_prompts": audio_prompts_input[1:],
+ "face_mask": face_masks_input[1:]
+ }
+ noise_pred_text = self.transformer(latent_model_input[1:], t_expand[1:], ref_latents=ref_latents[1:], text_states=prompt_embeds_input[1:], text_mask=prompt_mask_input[1:], text_states_2=prompt_embeds_2_input[1:], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
+ self.transformer.cache_out = torch.cat([uncond_cache_tensor, self.transformer.cache_out], dim=0)
+
+ noise_pred = torch.cat([noise_pred_uncond, noise_pred_text], dim=0)
+ torch.cuda.empty_cache()
+ else:
+ additional_kwargs = {
+ "motion_exp": motion_exp_input,
+ "motion_pose": motion_pose_input,
+ "fps": fps_input,
+ "audio_prompts": audio_prompts_input,
+ "face_mask": face_masks_input
+ }
+ noise_pred = self.transformer(latent_model_input, t_expand, ref_latents=ref_latents, text_states=prompt_embeds_input, text_mask=prompt_mask_input, text_states_2=prompt_embeds_2_input, freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
+ torch.cuda.empty_cache()
+
+ if self.cache_tensor is None:
+ self.cache_tensor = {
+ "ref": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2), 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(),
+ "img": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2), 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(),
+ "txt": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], prompt_embeds_input.shape[1], 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(),
+ }
+
+ self.cache_tensor["ref"][:, idx_list] = self.transformer.cache_out[:, :img_ref_len-img_len].reshape(latent_model_input.shape[0], 1, -1, 3072).repeat(1, len(idx_list), 1, 1)
+ self.cache_tensor["img"][:, idx_list] = self.transformer.cache_out[:, img_ref_len-img_len:img_ref_len].reshape(latent_model_input.shape[0], len(idx_list), -1, 3072)
+ self.cache_tensor["txt"][:, idx_list] = self.transformer.cache_out[:, img_ref_len:].unsqueeze(1).repeat(1, len(idx_list), 1, 1)
+
+ else:
+ is_cache = True
+ # self.transformer.cache_out[:, :img_ref_len-img_len] = self.cache_tensor["ref"][:, idx_list].mean(1)
+ self.transformer.cache_out[:, :img_ref_len-img_len] = self.cache_tensor["ref"][:, idx_list][:, 0].clone()
+ self.transformer.cache_out[:, img_ref_len-img_len:img_ref_len] = self.cache_tensor["img"][:, idx_list].reshape(-1, img_len, 3072).clone()
+ self.transformer.cache_out[:, img_ref_len:] = self.cache_tensor["txt"][:, idx_list][:, 0].clone()
+
+ if latent_model_input.shape[-1]*latent_model_input.shape[-2]>64*112 and cpu_offload:
+ if i==0:
+ print(f'cpu_offload={cpu_offload} and {latent_model_input.shape[-2:]} is large, split infer noise-pred')
+
+ additional_kwargs = {
+ "motion_exp": motion_exp_input[:1],
+ "motion_pose": motion_pose_input[:1],
+ "fps": fps_input[:1],
+ "audio_prompts": audio_prompts_input[:1],
+ "face_mask": face_masks_input[:1]
+ }
+ tmp = self.transformer.cache_out.clone()
+ self.transformer.cache_out = tmp[:1]
+ noise_pred_uncond = self.transformer(latent_model_input[:1], t_expand[:1], ref_latents=ref_latents[:1], text_states=prompt_embeds_input[:1], text_mask=prompt_mask_input[:1], text_states_2=prompt_embeds_2_input[:1], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
+
+
+ torch.cuda.empty_cache()
+
+ additional_kwargs = {
+ "motion_exp": motion_exp_input[1:],
+ "motion_pose": motion_pose_input[1:],
+ "fps": fps_input[1:],
+ "audio_prompts": audio_prompts_input[1:],
+ "face_mask": face_masks_input[1:]
+ }
+ self.transformer.cache_out = tmp[1:]
+ noise_pred_text = self.transformer(latent_model_input[1:], t_expand[1:], ref_latents=ref_latents[1:], text_states=prompt_embeds_input[1:], text_mask=prompt_mask_input[1:], text_states_2=prompt_embeds_2_input[1:], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
+ noise_pred = torch.cat([noise_pred_uncond, noise_pred_text], dim=0)
+
+ self.transformer.cache_out = tmp
+ torch.cuda.empty_cache()
+ else:
+ additional_kwargs = {
+ "motion_exp": motion_exp_input,
+ "motion_pose": motion_pose_input,
+ "fps": fps_input,
+ "audio_prompts": audio_prompts_input,
+ "face_mask": face_masks_input
+ }
+ noise_pred = self.transformer(latent_model_input, t_expand, ref_latents=ref_latents, text_states=prompt_embeds_input, text_mask=prompt_mask_input, text_states_2=prompt_embeds_2_input, freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x']
+ torch.cuda.empty_cache()
+ # perform guidance
+ if self.do_classifier_free_guidance:
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
+
+ # compute the previous noisy sample x_t -> x_t-1
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+ if callback_on_step_end is not None:
+ callback_kwargs = {}
+ for k in callback_on_step_end_tensor_inputs:
+ callback_kwargs[k] = locals()[k]
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+ latents = callback_outputs.pop("latents", latents)
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+ negative_prompt_embeds = callback_outputs.pop(
+ "negative_prompt_embeds", negative_prompt_embeds
+ )
+ latents = latents.to(torch.bfloat16)
+ for iii in range(frames_per_batch):
+ p = (index_start + iii) % pred_latents.shape[2]
+ pred_latents[:, :, p] += latents[:, :, iii]
+ counter[:, :, p] += 1
+
+ shift += shift_offset
+ shift = shift % frames_per_batch
+ pred_latents = pred_latents / counter
+ latents_all = pred_latents
+
+ # call the callback, if provided
+ if i == len(timesteps) - 1 or (
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
+ ):
+ if progress_bar is not None:
+ progress_bar.update()
+ if callback is not None and i % callback_steps == 0:
+ step_idx = i // getattr(self.scheduler, "order", 1)
+ callback(step_idx, t, latents)
+
+ latents = latents_all.float()[:, :, :video_length]
+ if cpu_offload: torch.cuda.empty_cache()
+
+ if not output_type == "latent":
+ expand_temporal_dim = False
+ if len(latents.shape) == 4:
+ if isinstance(self.vae, AutoencoderKLCausal3D):
+ latents = latents.unsqueeze(2)
+ expand_temporal_dim = True
+ elif len(latents.shape) == 5:
+ pass
+ else:
+ raise ValueError(
+ f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.")
+
+ if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor:
+ latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
+ else:
+ latents = latents / self.vae.config.scaling_factor
+
+ with torch.autocast(device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled):
+ if enable_tiling:
+ self.vae.enable_tiling()
+ if cpu_offload:
+ self.vae.post_quant_conv.to('cuda')
+ self.vae.decoder.to('cuda')
+ image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
+ self.vae.disable_tiling()
+ if cpu_offload:
+ self.vae.post_quant_conv.to('cpu')
+ self.vae.decoder.to('cpu')
+ torch.cuda.empty_cache()
+ else:
+ image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
+ if image is None:
+ return (None, )
+
+ if expand_temporal_dim or image.shape[2] == 1:
+ image = image.squeeze(2)
+
+ image = (image / 2 + 0.5).clamp(0, 1)
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
+ image = image.cpu().float()
+
+ # Offload all models
+ self.maybe_free_model_hooks()
+
+ if cpu_offload: torch.cuda.empty_cache()
+ if not return_dict:
+ return image
+
+ return HunyuanVideoPipelineOutput(videos=image)
diff --git a/hymm_sp/diffusion/schedulers/__init__.py b/hymm_sp/diffusion/schedulers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6afd057baf947ecf3777405c7ecf60a68277365c
--- /dev/null
+++ b/hymm_sp/diffusion/schedulers/__init__.py
@@ -0,0 +1 @@
+from .scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
\ No newline at end of file
diff --git a/hymm_sp/diffusion/schedulers/__pycache__/__init__.cpython-310.pyc b/hymm_sp/diffusion/schedulers/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a667aaaef47e0754e5f7745214995c79d4ac7a86
Binary files /dev/null and b/hymm_sp/diffusion/schedulers/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/diffusion/schedulers/__pycache__/scheduling_flow_match_discrete.cpython-310.pyc b/hymm_sp/diffusion/schedulers/__pycache__/scheduling_flow_match_discrete.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9ed7c5162afe9af8c29ac51f34c4c555a6e5285d
Binary files /dev/null and b/hymm_sp/diffusion/schedulers/__pycache__/scheduling_flow_match_discrete.cpython-310.pyc differ
diff --git a/hymm_sp/diffusion/schedulers/scheduling_flow_match_discrete.py b/hymm_sp/diffusion/schedulers/scheduling_flow_match_discrete.py
new file mode 100644
index 0000000000000000000000000000000000000000..194d926493b5e3800282dff1a773a75511e8c6f4
--- /dev/null
+++ b/hymm_sp/diffusion/schedulers/scheduling_flow_match_discrete.py
@@ -0,0 +1,240 @@
+# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+#
+# Modified from diffusers==0.29.2
+#
+# ==============================================================================
+
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from diffusers.utils import BaseOutput, logging
+from diffusers.schedulers.scheduling_utils import SchedulerMixin
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+@dataclass
+class FlowMatchDiscreteSchedulerOutput(BaseOutput):
+ """
+ Output class for the scheduler's `step` function output.
+
+ Args:
+ prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
+ denoising loop.
+ """
+
+ prev_sample: torch.FloatTensor
+
+
+class FlowMatchDiscreteScheduler(SchedulerMixin, ConfigMixin):
+ """
+ Euler scheduler.
+
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
+ methods the library implements for all schedulers such as loading and saving.
+
+ Args:
+ num_train_timesteps (`int`, defaults to 1000):
+ The number of diffusion steps to train the model.
+ timestep_spacing (`str`, defaults to `"linspace"`):
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
+ shift (`float`, defaults to 1.0):
+ The shift value for the timestep schedule.
+ reverse (`bool`, defaults to `True`):
+ Whether to reverse the timestep schedule.
+ """
+
+ _compatibles = []
+ order = 1
+
+ @register_to_config
+ def __init__(
+ self,
+ num_train_timesteps: int = 1000,
+ shift: float = 1.0,
+ reverse: bool = True,
+ solver: str = "euler",
+ n_tokens: Optional[int] = None,
+ ):
+ sigmas = torch.linspace(1, 0, num_train_timesteps + 1)
+
+ if not reverse:
+ sigmas = sigmas.flip(0)
+
+ self.sigmas = sigmas
+ # the value fed to model
+ self.timesteps = (sigmas[:-1] * num_train_timesteps).to(dtype=torch.float32)
+
+ self._step_index = None
+ self._begin_index = None
+
+ self.supported_solver = ["euler"]
+ if solver not in self.supported_solver:
+ raise ValueError(f"Solver {solver} not supported. Supported solvers: {self.supported_solver}")
+
+ @property
+ def step_index(self):
+ """
+ The index counter for current timestep. It will increase 1 after each scheduler step.
+ """
+ return self._step_index
+
+ @property
+ def begin_index(self):
+ """
+ The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
+ """
+ return self._begin_index
+
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
+ def set_begin_index(self, begin_index: int = 0):
+ """
+ Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
+
+ Args:
+ begin_index (`int`):
+ The begin index for the scheduler.
+ """
+ self._begin_index = begin_index
+
+ def _sigma_to_t(self, sigma):
+ return sigma * self.config.num_train_timesteps
+
+ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None,
+ n_tokens: int = None):
+ """
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
+
+ Args:
+ num_inference_steps (`int`):
+ The number of diffusion steps used when generating samples with a pre-trained model.
+ device (`str` or `torch.device`, *optional*):
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+ n_tokens (`int`, *optional*):
+ Number of tokens in the input sequence.
+ """
+ self.num_inference_steps = num_inference_steps
+
+ sigmas = torch.linspace(1, 0, num_inference_steps + 1)
+ sigmas = self.sd3_time_shift(sigmas)
+
+ if not self.config.reverse:
+ sigmas = 1 - sigmas
+
+ self.sigmas = sigmas
+ self.timesteps = (sigmas[:-1] * self.config.num_train_timesteps).to(dtype=torch.float32, device=device)
+
+ # Reset step index
+ self._step_index = None
+
+ def index_for_timestep(self, timestep, schedule_timesteps=None):
+ if schedule_timesteps is None:
+ schedule_timesteps = self.timesteps
+
+ indices = (schedule_timesteps == timestep).nonzero()
+
+ # The sigma index that is taken for the **very** first `step`
+ # is always the second index (or the last index if there is only 1)
+ # This way we can ensure we don't accidentally skip a sigma in
+ # case we start in the middle of the denoising schedule (e.g. for image-to-image)
+ pos = 1 if len(indices) > 1 else 0
+
+ return indices[pos].item()
+
+ def _init_step_index(self, timestep):
+ if self.begin_index is None:
+ if isinstance(timestep, torch.Tensor):
+ timestep = timestep.to(self.timesteps.device)
+ self._step_index = self.index_for_timestep(timestep)
+ else:
+ self._step_index = self._begin_index
+
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
+ return sample
+
+ def sd3_time_shift(self, t: torch.Tensor):
+ return (self.config.shift * t) / (1 + (self.config.shift - 1) * t)
+
+ def step(
+ self,
+ model_output: torch.FloatTensor,
+ timestep: Union[float, torch.FloatTensor],
+ sample: torch.FloatTensor,
+ return_dict: bool = True,
+ ) -> Union[FlowMatchDiscreteSchedulerOutput, Tuple]:
+ """
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
+ process from the learned model outputs (most often the predicted noise).
+
+ Args:
+ model_output (`torch.FloatTensor`):
+ The direct output from learned diffusion model.
+ timestep (`float`):
+ The current discrete timestep in the diffusion chain.
+ sample (`torch.FloatTensor`):
+ A current instance of a sample created by the diffusion process.
+ return_dict (`bool`):
+ Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
+ tuple.
+
+ Returns:
+ [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
+ If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
+ returned, otherwise a tuple is returned where the first element is the sample tensor.
+ """
+
+ if (
+ isinstance(timestep, int)
+ or isinstance(timestep, torch.IntTensor)
+ or isinstance(timestep, torch.LongTensor)
+ ):
+ raise ValueError(
+ (
+ "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
+ " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
+ " one of the `scheduler.timesteps` as a timestep."
+ ),
+ )
+
+ if self.step_index is None:
+ self._init_step_index(timestep)
+
+ # Upcast to avoid precision issues when computing prev_sample
+ sample = sample.to(torch.float32)
+
+ dt = self.sigmas[self.step_index + 1] - self.sigmas[self.step_index]
+
+ if self.config.solver == "euler":
+ prev_sample = sample + model_output.float() * dt
+ else:
+ raise ValueError(f"Solver {self.config.solver} not supported. Supported solvers: {self.supported_solver}")
+
+ # upon completion increase step index by one
+ self._step_index += 1
+
+ if not return_dict:
+ return (prev_sample,)
+
+ return FlowMatchDiscreteSchedulerOutput(prev_sample=prev_sample)
+
+ def __len__(self):
+ return self.config.num_train_timesteps
diff --git a/hymm_sp/helpers.py b/hymm_sp/helpers.py
new file mode 100644
index 0000000000000000000000000000000000000000..3e29c5aa2fad008d2b61598d4e54afa5d47e4fdb
--- /dev/null
+++ b/hymm_sp/helpers.py
@@ -0,0 +1,103 @@
+import torch
+from typing import Union, List
+from hymm_sp.modules.posemb_layers import get_1d_rotary_pos_embed, get_meshgrid_nd
+
+from itertools import repeat
+import collections.abc
+
+
+def _ntuple(n):
+ def parse(x):
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
+ x = tuple(x)
+ if len(x) == 1:
+ x = tuple(repeat(x[0], n))
+ return x
+ return tuple(repeat(x, n))
+ return parse
+
+to_1tuple = _ntuple(1)
+to_2tuple = _ntuple(2)
+to_3tuple = _ntuple(3)
+to_4tuple = _ntuple(4)
+
+def get_rope_freq_from_size(latents_size, ndim, target_ndim, args,
+ rope_theta_rescale_factor: Union[float, List[float]]=1.0,
+ rope_interpolation_factor: Union[float, List[float]]=1.0,
+ concat_dict={}):
+
+ if isinstance(args.patch_size, int):
+ assert all(s % args.patch_size == 0 for s in latents_size), \
+ f"Latent size(last {ndim} dimensions) should be divisible by patch size({args.patch_size}), " \
+ f"but got {latents_size}."
+ rope_sizes = [s // args.patch_size for s in latents_size]
+ elif isinstance(args.patch_size, list):
+ assert all(s % args.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), \
+ f"Latent size(last {ndim} dimensions) should be divisible by patch size({args.patch_size}), " \
+ f"but got {latents_size}."
+ rope_sizes = [s // args.patch_size[idx] for idx, s in enumerate(latents_size)]
+
+ if len(rope_sizes) != target_ndim:
+ rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
+ head_dim = args.hidden_size // args.num_heads
+ rope_dim_list = args.rope_dim_list
+ if rope_dim_list is None:
+ rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
+ assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
+ freqs_cos, freqs_sin = get_nd_rotary_pos_embed_new(rope_dim_list,
+ rope_sizes,
+ theta=args.rope_theta,
+ use_real=True,
+ theta_rescale_factor=rope_theta_rescale_factor,
+ interpolation_factor=rope_interpolation_factor,
+ concat_dict=concat_dict)
+ return freqs_cos, freqs_sin
+
+def get_nd_rotary_pos_embed_new(rope_dim_list, start, *args, theta=10000., use_real=False,
+ theta_rescale_factor: Union[float, List[float]]=1.0,
+ interpolation_factor: Union[float, List[float]]=1.0,
+ concat_dict={}
+ ):
+
+ grid = get_meshgrid_nd(start, *args, dim=len(rope_dim_list)) # [3, W, H, D] / [2, W, H]
+ if len(concat_dict)<1:
+ pass
+ else:
+ if concat_dict['mode']=='timecat':
+ bias = grid[:,:1].clone()
+ bias[0] = concat_dict['bias']*torch.ones_like(bias[0])
+ grid = torch.cat([bias, grid], dim=1)
+
+ elif concat_dict['mode']=='timecat-w':
+ bias = grid[:,:1].clone()
+ bias[0] = concat_dict['bias']*torch.ones_like(bias[0])
+ bias[2] += start[-1] ## ref https://github.com/Yuanshi9815/OminiControl/blob/main/src/generate.py#L178
+ grid = torch.cat([bias, grid], dim=1)
+ if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
+ theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
+ elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
+ theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
+ assert len(theta_rescale_factor) == len(rope_dim_list), "len(theta_rescale_factor) should equal to len(rope_dim_list)"
+
+ if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
+ interpolation_factor = [interpolation_factor] * len(rope_dim_list)
+ elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
+ interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
+ assert len(interpolation_factor) == len(rope_dim_list), "len(interpolation_factor) should equal to len(rope_dim_list)"
+
+ # use 1/ndim of dimensions to encode grid_axis
+ embs = []
+ for i in range(len(rope_dim_list)):
+ emb = get_1d_rotary_pos_embed(rope_dim_list[i], grid[i].reshape(-1), theta, use_real=use_real,
+ theta_rescale_factor=theta_rescale_factor[i],
+ interpolation_factor=interpolation_factor[i]) # 2 x [WHD, rope_dim_list[i]]
+
+ embs.append(emb)
+
+ if use_real:
+ cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2)
+ sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2)
+ return cos, sin
+ else:
+ emb = torch.cat(embs, dim=1) # (WHD, D/2)
+ return emb
\ No newline at end of file
diff --git a/hymm_sp/inference.py b/hymm_sp/inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..133d91d281c3130fa27cabffaf20887000a7a373
--- /dev/null
+++ b/hymm_sp/inference.py
@@ -0,0 +1,178 @@
+import torch
+from pathlib import Path
+from loguru import logger
+from hymm_sp.constants import PROMPT_TEMPLATE, PRECISION_TO_TYPE
+from hymm_sp.vae import load_vae
+from hymm_sp.modules import load_model
+from hymm_sp.text_encoder import TextEncoder
+import torch.distributed
+from hymm_sp.modules.parallel_states import (
+ nccl_info,
+)
+from hymm_sp.modules.fp8_optimization import convert_fp8_linear
+
+
+class Inference(object):
+ def __init__(self,
+ args,
+ vae,
+ vae_kwargs,
+ text_encoder,
+ model,
+ text_encoder_2=None,
+ pipeline=None,
+ cpu_offload=False,
+ device=None,
+ logger=None):
+ self.vae = vae
+ self.vae_kwargs = vae_kwargs
+
+ self.text_encoder = text_encoder
+ self.text_encoder_2 = text_encoder_2
+
+ self.model = model
+ self.pipeline = pipeline
+ self.cpu_offload = cpu_offload
+
+ self.args = args
+ self.device = device if device is not None else "cuda" if torch.cuda.is_available() else "cpu"
+ if nccl_info.sp_size > 1:
+ self.device = torch.device(f"cuda:{torch.distributed.get_rank()}")
+
+ self.logger = logger
+
+ @classmethod
+ def from_pretrained(cls,
+ pretrained_model_path,
+ args,
+ device=None,
+ **kwargs):
+ """
+ Initialize the Inference pipeline.
+
+ Args:
+ pretrained_model_path (str or pathlib.Path): The model path, including t2v, text encoder and vae checkpoints.
+ device (int): The device for inference. Default is 0.
+ logger (logging.Logger): The logger for the inference pipeline. Default is None.
+ """
+ # ========================================================================
+ logger.info(f"Got text-to-video model root path: {pretrained_model_path}")
+
+ # ======================== Get the args path =============================
+
+ # Set device and disable gradient
+ if device is None:
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ torch.set_grad_enabled(False)
+ logger.info("Building model...")
+ factor_kwargs = {'device': 'cpu' if args.cpu_offload else device, 'dtype': PRECISION_TO_TYPE[args.precision]}
+ in_channels = args.latent_channels
+ out_channels = args.latent_channels
+ print("="*25, f"build model", "="*25)
+ model = load_model(
+ args,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ factor_kwargs=factor_kwargs
+ )
+ if args.use_fp8:
+ convert_fp8_linear(model, pretrained_model_path, original_dtype=PRECISION_TO_TYPE[args.precision])
+ if args.cpu_offload:
+ print(f'='*20, f'load transformer to cpu')
+ model = model.to('cpu')
+ torch.cuda.empty_cache()
+ else:
+ model = model.to(device)
+ model = Inference.load_state_dict(args, model, pretrained_model_path)
+ model.eval()
+
+ # ============================= Build extra models ========================
+ # VAE
+ print("="*25, f"load vae", "="*25)
+ vae, _, s_ratio, t_ratio = load_vae(args.vae, args.vae_precision, logger=logger, device='cpu' if args.cpu_offload else device)
+ vae_kwargs = {'s_ratio': s_ratio, 't_ratio': t_ratio}
+
+ # Text encoder
+ if args.prompt_template_video is not None:
+ crop_start = PROMPT_TEMPLATE[args.prompt_template_video].get("crop_start", 0)
+ else:
+ crop_start = 0
+ max_length = args.text_len + crop_start
+
+ # prompt_template_video
+ prompt_template_video = PROMPT_TEMPLATE[args.prompt_template_video] if args.prompt_template_video is not None else None
+ print("="*25, f"load llava", "="*25)
+ text_encoder = TextEncoder(text_encoder_type = args.text_encoder,
+ max_length = max_length,
+ text_encoder_precision = args.text_encoder_precision,
+ tokenizer_type = args.tokenizer,
+ use_attention_mask = args.use_attention_mask,
+ prompt_template_video = prompt_template_video,
+ hidden_state_skip_layer = args.hidden_state_skip_layer,
+ apply_final_norm = args.apply_final_norm,
+ reproduce = args.reproduce,
+ logger = logger,
+ device = 'cpu' if args.cpu_offload else device ,
+ )
+ text_encoder_2 = None
+ if args.text_encoder_2 is not None:
+ text_encoder_2 = TextEncoder(text_encoder_type=args.text_encoder_2,
+ max_length=args.text_len_2,
+ text_encoder_precision=args.text_encoder_precision_2,
+ tokenizer_type=args.tokenizer_2,
+ use_attention_mask=args.use_attention_mask,
+ reproduce=args.reproduce,
+ logger=logger,
+ device='cpu' if args.cpu_offload else device , # if not args.use_cpu_offload else 'cpu'
+ )
+
+ return cls(args=args,
+ vae=vae,
+ vae_kwargs=vae_kwargs,
+ text_encoder=text_encoder,
+ model=model,
+ text_encoder_2=text_encoder_2,
+ device=device,
+ logger=logger)
+
+ @staticmethod
+ def load_state_dict(args, model, ckpt_path):
+ load_key = args.load_key
+ ckpt_path = Path(ckpt_path)
+ if ckpt_path.is_dir():
+ ckpt_path = next(ckpt_path.glob("*_model_states.pt"))
+ state_dict = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
+ if load_key in state_dict:
+ state_dict = state_dict[load_key]
+ elif load_key == ".":
+ pass
+ else:
+ raise KeyError(f"Key '{load_key}' not found in the checkpoint. Existed keys: {state_dict.keys()}")
+ model.load_state_dict(state_dict, strict=False)
+ return model
+
+ def get_exp_dir_and_ckpt_id(self):
+ if self.ckpt is None:
+ raise ValueError("The checkpoint path is not provided.")
+
+ ckpt = Path(self.ckpt)
+ if ckpt.parents[1].name == "checkpoints":
+ # It should be a standard checkpoint path. We use the parent directory as the default save directory.
+ exp_dir = ckpt.parents[2]
+ else:
+ raise ValueError(f"We cannot infer the experiment directory from the checkpoint path: {ckpt}. "
+ f"It seems that the checkpoint path is not standard. Please explicitly provide the "
+ f"save path by --save-path.")
+ return exp_dir, ckpt.parent.name
+
+ @staticmethod
+ def parse_size(size):
+ if isinstance(size, int):
+ size = [size]
+ if not isinstance(size, (list, tuple)):
+ raise ValueError(f"Size must be an integer or (height, width), got {size}.")
+ if len(size) == 1:
+ size = [size[0], size[0]]
+ if len(size) != 2:
+ raise ValueError(f"Size must be an integer or (height, width), got {size}.")
+ return size
diff --git a/hymm_sp/modules/__init__.py b/hymm_sp/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9afb3ec4a0ff741c449f0f5395607f1d389a8898
--- /dev/null
+++ b/hymm_sp/modules/__init__.py
@@ -0,0 +1,11 @@
+from .models_audio import HYVideoDiffusionTransformer, HUNYUAN_VIDEO_CONFIG
+
+def load_model(args, in_channels, out_channels, factor_kwargs):
+ model = HYVideoDiffusionTransformer(
+ args,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ **HUNYUAN_VIDEO_CONFIG[args.model],
+ **factor_kwargs,
+ )
+ return model
diff --git a/hymm_sp/modules/__pycache__/__init__.cpython-310.pyc b/hymm_sp/modules/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b9a48e7e8854f0d8ce96e4290f145be21bb77b08
Binary files /dev/null and b/hymm_sp/modules/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/activation_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/activation_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..99476634d6ab8c76c0e79fb8c415a3f29761884c
Binary files /dev/null and b/hymm_sp/modules/__pycache__/activation_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/attn_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/attn_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..af0890961025d79bcfec925fc232c489b2244f9f
Binary files /dev/null and b/hymm_sp/modules/__pycache__/attn_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/audio_adapters.cpython-310.pyc b/hymm_sp/modules/__pycache__/audio_adapters.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a87722e5686e14d1829539014b1e7c4893bb47da
Binary files /dev/null and b/hymm_sp/modules/__pycache__/audio_adapters.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/embed_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/embed_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bca5dd2426b1959a6ce2ee4a04ad9a6b65901f29
Binary files /dev/null and b/hymm_sp/modules/__pycache__/embed_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/fp8_optimization.cpython-310.pyc b/hymm_sp/modules/__pycache__/fp8_optimization.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1db5858f98759ec2147fcc932c00b75c9688f5ca
Binary files /dev/null and b/hymm_sp/modules/__pycache__/fp8_optimization.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/mlp_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/mlp_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f671be11cbc484fa4e042d7ec15e8ac2ad981178
Binary files /dev/null and b/hymm_sp/modules/__pycache__/mlp_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/models_audio.cpython-310.pyc b/hymm_sp/modules/__pycache__/models_audio.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d4df97227b143b7db6ef8e6c33be195b2d947c78
Binary files /dev/null and b/hymm_sp/modules/__pycache__/models_audio.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/modulate_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/modulate_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ab2cc31965d11618f90ad6d5b9750ef2a9e570e5
Binary files /dev/null and b/hymm_sp/modules/__pycache__/modulate_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/norm_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/norm_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..981324d8c751bfaf1c8691dc53bce4bfab39bc8a
Binary files /dev/null and b/hymm_sp/modules/__pycache__/norm_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/parallel_states.cpython-310.pyc b/hymm_sp/modules/__pycache__/parallel_states.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1116296a6bd75ea6e8acfdcba94dbc562bdb05ad
Binary files /dev/null and b/hymm_sp/modules/__pycache__/parallel_states.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/posemb_layers.cpython-310.pyc b/hymm_sp/modules/__pycache__/posemb_layers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..133696dba2d96e6b33c0c9adb447bb290ebba69b
Binary files /dev/null and b/hymm_sp/modules/__pycache__/posemb_layers.cpython-310.pyc differ
diff --git a/hymm_sp/modules/__pycache__/token_refiner.cpython-310.pyc b/hymm_sp/modules/__pycache__/token_refiner.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..efa0256838f28ec95d8d973e066cf6917d2e51c3
Binary files /dev/null and b/hymm_sp/modules/__pycache__/token_refiner.cpython-310.pyc differ
diff --git a/hymm_sp/modules/activation_layers.py b/hymm_sp/modules/activation_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd0e145ca844b5321df35dabe700e335487a3a35
--- /dev/null
+++ b/hymm_sp/modules/activation_layers.py
@@ -0,0 +1,23 @@
+import torch.nn as nn
+
+
+def get_activation_layer(act_type):
+ """get activation layer
+
+ Args:
+ act_type (str): the activation type
+
+ Returns:
+ torch.nn.functional: the activation layer
+ """
+ if act_type == "gelu":
+ return lambda: nn.GELU()
+ elif act_type == "gelu_tanh":
+ # Approximate `tanh` requires torch >= 1.13
+ return lambda: nn.GELU(approximate="tanh")
+ elif act_type == "relu":
+ return nn.ReLU
+ elif act_type == "silu":
+ return nn.SiLU
+ else:
+ raise ValueError(f"Unknown activation type: {act_type}")
\ No newline at end of file
diff --git a/hymm_sp/modules/attn_layers.py b/hymm_sp/modules/attn_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..d51e2ef24a248bf11554862ec910de848e0cb806
--- /dev/null
+++ b/hymm_sp/modules/attn_layers.py
@@ -0,0 +1,429 @@
+import importlib.metadata
+import math
+from typing import Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+try:
+ from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func
+ from flash_attn.bert_padding import index_first_axis
+except ImportError:
+ flash_attn_qkvpacked_func, flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func = None, None, None
+ index_first_axis = None
+from packaging import version
+from transformers.utils.import_utils import _is_package_available
+
+from .norm_layers import get_norm_layer
+
+
+def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
+ """
+ Reshape frequency tensor for broadcasting it with another tensor.
+
+ This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
+ for the purpose of broadcasting the frequency tensor during element-wise operations.
+
+ Notes:
+ When using FlashMHAModified, head_first should be False.
+ When using Attention, head_first should be True.
+
+ Args:
+ freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
+ x (torch.Tensor): Target tensor for broadcasting compatibility.
+ head_first (bool): head dimension first (except batch dim) or not.
+
+ Returns:
+ torch.Tensor: Reshaped frequency tensor.
+
+ Raises:
+ AssertionError: If the frequency tensor doesn't match the expected shape.
+ AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
+ """
+ ndim = x.ndim
+ assert 0 <= 1 < ndim
+
+ if isinstance(freqs_cis, tuple):
+ # freqs_cis: (cos, sin) in real space
+ if head_first:
+ assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
+ shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
+ else:
+ assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
+ return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
+ else:
+ # freqs_cis: values in complex space
+ if head_first:
+ assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
+ shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
+ else:
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
+ return freqs_cis.view(*shape)
+
+
+def rotate_half(x):
+ x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
+ return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
+
+
+def apply_rotary_emb(
+ xq: torch.Tensor,
+ xk: torch.Tensor,
+ freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
+ head_first: bool = False,
+) -> Tuple[torch.Tensor, torch.Tensor]:
+ """
+ Apply rotary embeddings to input tensors using the given frequency tensor.
+
+ This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
+ frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
+ is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
+ returned as real tensors.
+
+ Args:
+ xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
+ xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
+ freqs_cis (torch.Tensor or tuple): Precomputed frequency tensor for complex exponential.
+ head_first (bool): head dimension first (except batch dim) or not.
+
+ Returns:
+ Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
+
+ """
+ xk_out = None
+ if isinstance(freqs_cis, tuple):
+ cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
+ cos, sin = cos.to(xq.device), sin.to(xq.device)
+ # real * cos - imag * sin
+ # imag * cos + real * sin
+ xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
+ xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
+ else:
+ # view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]
+ # (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
+ # view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2]
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
+
+ return xq_out, xk_out
+
+
+class BasicAttentionLayer(nn.Module):
+ def __init__(self, attn_mode='flash', deterministic=False):
+ super().__init__()
+ self.attn_mode = attn_mode
+ self.deterministic = deterministic
+
+ def set_attn_mode(self, new_mode):
+ self.attn_mode = new_mode
+
+ def enable_deterministic(self):
+ self.deterministic = True
+
+ def disable_deterministic(self):
+ self.deterministic = False
+
+
+MEMORY_LAYOUT = {
+ "self_flash": (
+ lambda x: x,
+ lambda x: x,
+ ),
+ "cross_flash": (
+ lambda x: x,
+ lambda x: x,
+ ),
+ "torch": (
+ lambda x: x.transpose(1, 2),
+ lambda x: x.transpose(1, 2),
+ ),
+ "vanilla": (
+ lambda x: x.transpose(1, 2),
+ lambda x: x.transpose(1, 2),
+ ),
+}
+
+
+# Copyed from https://github.com/huggingface/transformers/blob/b873234cb649a24865021f0d598627ce2b24d34a/src/transformers/modeling_flash_attention_utils.py#L33C1-L57C6
+def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
+ """
+ Retrieves indexing data required to repad unpadded (ragged) tensors.
+
+ Arguments:
+ attention_mask (`torch.Tensor`):
+ Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
+
+ Return:
+ indices (`torch.Tensor):
+ The indices of non-masked tokens from the flattened input sequence.
+ cu_seqlens (`torch.Tensor`):
+ The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
+ max_seqlen_in_batch (`int`):
+ Maximum sequence length in batch.
+ """
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
+ return (
+ indices,
+ cu_seqlens,
+ max_seqlen_in_batch,
+ )
+
+
+# Copyed from https://github.com/huggingface/transformers/blob/b873234cb649a24865021f0d598627ce2b24d34a/src/transformers/utils/import_utils.py#L822
+def is_flash_attn_greater_or_equal(library_version: str):
+ if not _is_package_available("flash_attn"):
+ return False
+
+ return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version)
+
+
+def get_kv_seqlens_with_mask(attn_mask, k, v):
+ indices_k, cu_seqlens_k, max_seqlen_k = _get_unpad_data(attn_mask)
+ b, s1, a, d = k.shape
+ k = index_first_axis(k.reshape(b * s1, a, d), indices_k)
+ v = index_first_axis(v.reshape(b * s1, a, d), indices_k)
+ kv = torch.stack([k, v], dim=1)
+ return cu_seqlens_k, max_seqlen_k, kv
+
+
+def get_q_seqlens(q):
+ bs, s, a, d = q.shape
+ cu_seqlens_q = torch.arange(0, (bs + 1) * s, step=s, dtype=torch.int32, device=q.device)
+ q = q.reshape(bs * s, a, d)
+ return cu_seqlens_q, s, q
+
+
+def attention(q, k, v, mode, drop_rate=0, attn_mask=None, causal=False, deterministic=False,
+ cu_seqlens=None, max_seqlen=None, cu_seqlens_k=None, max_seqlen_k=None):
+ """
+ Perform QKV self attention.
+
+ Args:
+ q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
+ k (torch.Tensor): Key tensor with shape [b, s1, a, d]
+ v (torch.Tensor): Value tensor with shape [b, s1, a, d]
+ mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
+ drop_rate (float): Dropout rate in attention map. (default: 0)
+ attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
+ (default: None)
+ causal (bool): Whether to use causal attention. (default: False)
+ deterministic (bool): Whether to use deterministic attention. (default: False)
+ cu_seqlens (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
+ used to index into q.
+ max_seqlen (int): The maximum sequence length in the batch of q.
+ cu_seqlens_k (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
+ used to index into kv.
+ max_seqlen_k (int): The maximum sequence length in the batch of k and v.
+
+ Returns:
+ torch.Tensor: Output tensor after self attention with shape [b, s, ad]
+ """
+ pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
+ q = pre_attn_layout(q)
+ k = pre_attn_layout(k)
+ v = pre_attn_layout(v)
+
+ if mode == 'torch':
+ if attn_mask is not None and attn_mask.dtype != torch.bool:
+ attn_mask = attn_mask.to(q.dtype)
+ x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)
+
+ elif mode == 'vanilla':
+ scale_factor = 1 / math.sqrt(q.size(-1))
+
+ b, a, s, _ = q.shape
+ s1 = k.size(2)
+ attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
+ if causal:
+ # Only applied to self attention
+ assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
+ temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
+ attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
+ attn_bias.to(q.dtype)
+
+ if attn_mask is not None:
+ if attn_mask.dtype == torch.bool:
+ attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
+ else:
+ attn_bias += attn_mask
+
+ attn = (q @ k.transpose(-2, -1)) * scale_factor
+ attn += attn_bias
+ attn = attn.softmax(dim=-1)
+ attn = torch.dropout(attn, p=drop_rate, train=True)
+ x = attn @ v
+ else:
+ raise NotImplementedError(f'Unsupported attention mode: {mode}')
+
+ x = post_attn_layout(x)
+ b, s, a, d = x.shape
+ out = x.reshape(b, s, -1)
+ return out
+
+
+class SelfAttentionLayer(BasicAttentionLayer):
+ def __init__(self,
+ dim,
+ num_heads,
+ qkv_bias=True,
+ qk_norm=True,
+ attn_drop=0,
+ proj_drop=0,
+ dtype=None,
+ device=None,
+ norm_type='layer',
+ attn_mode='self_flash',
+ deterministic=False,
+ ) -> None:
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__(attn_mode, deterministic)
+ self.dim = dim
+ self.num_heads = num_heads
+ assert self.dim % num_heads == 0, "dim must be divisible by num_heads"
+ self.head_dim = self.dim // num_heads
+ self.attn_drop = attn_drop
+
+ # This assertion is aligned with flash attention
+ assert (
+ self.head_dim % 8 == 0 and self.head_dim <= 128
+ ), "Only support head_dim <= 128 and divisible by 8"
+
+ self.Wqkv = nn.Linear(dim, dim * 3, bias=qkv_bias, **factory_kwargs)
+
+ norm_layer = get_norm_layer(norm_type)
+ self.q_norm = (
+ norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.k_norm = (
+ norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+
+ self.out_proj = nn.Linear(dim, dim, bias=qkv_bias, **factory_kwargs)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ def forward(self, x, freqs_cis=None, attn_mask=None):
+ """
+ Args:
+ x (torch.Tensor): (batch, seq_len, hidden_dim) (where hidden_dim = num heads * head dim)
+ freqs_cis (torch.Tensor, optional): (batch, hidden_dim // 2), RoPE for image
+ attn_mask (torch.Tensor, optional): (batch, seq_len, seq_len), mask for attention
+ """
+ b, s, d = x.shape
+
+ # Apply QKV projection
+ qkv = self.Wqkv(x)
+ qkv = qkv.view(b, s, 3, self.num_heads, self.head_dim) # [b, s, 3, a, d]
+ q, k, v = qkv.unbind(dim=2) # [b, s, a, d]
+
+ # Apply QK-Norm if needed
+ q = self.q_norm(q)
+ k = self.k_norm(k)
+
+ # Apply RoPE if needed
+ if freqs_cis is not None:
+ qq, kk = apply_rotary_emb(q, k, freqs_cis)
+ assert qq.shape == q.shape and kk.shape == k.shape, \
+ f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
+ q, k = qq, kk
+
+ # Apply self attention
+ context = attention(q, k, v,
+ drop_rate=self.attn_drop if self.training else 0,
+ attn_mask=attn_mask,
+ mode=self.attn_mode,
+ deterministic=self.deterministic,
+ )
+ out = self.out_proj(context)
+ out = self.proj_drop(out)
+
+ return out
+
+
+class CrossAttentionLayer(BasicAttentionLayer):
+ def __init__(self,
+ qdim,
+ kdim,
+ num_heads,
+ qkv_bias=True,
+ qk_norm=True,
+ attn_drop=0,
+ proj_drop=0,
+ dtype=None,
+ device=None,
+ norm_type='layer',
+ attn_mode='cross_flash',
+ deterministic=False,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__(attn_mode, deterministic)
+ self.qdim = qdim
+ self.kdim = kdim
+ self.num_heads = num_heads
+ assert self.qdim % num_heads == 0, "qdim must be divisible by num_heads"
+ self.head_dim = self.qdim // num_heads
+ self.attn_drop = attn_drop
+
+ # This assertion is aligned with flash attention
+ assert (
+ self.head_dim % 8 == 0 and self.head_dim <= 128
+ ), "Only support head_dim <= 128 and divisible by 8"
+
+ self.q_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
+ self.kv_proj = nn.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)
+
+ norm_layer = get_norm_layer(norm_type)
+ self.q_norm = (
+ norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.k_norm = (
+ norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+
+ self.out_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ def forward(self, x, y, attn_mask=None):
+ """
+ Args:
+ x (torch.Tensor): (batch, seq_len, hidden_dim) (where hidden_dim = num heads * head dim)
+ y (torch.Tensor): (batch, seq_len1, hidden_dim1)
+ attn_mask (torch.Tensor): (batch, seq_len1), mask for attention
+ """
+ b, s, d = x.shape
+ _, s1, d1 = y.shape
+
+ q = self.q_proj(x).view(b, s, self.num_heads, self.head_dim)
+ kv = self.kv_proj(y).view(b, s1, 2, self.num_heads, self.head_dim)
+ k, v = kv.unbind(dim=2)
+
+ # Apply QK-Norm if needed
+ q = self.q_norm(q)
+ k = self.k_norm(k)
+
+ # Apply cross attention
+ context = attention(q, k, v,
+ attn_mask=attn_mask,
+ drop_rate=self.attn_drop if self.training else 0,
+ mode=self.attn_mode,
+ deterministic=self.deterministic,
+ )
+ out = self.out_proj(context)
+ out = self.proj_drop(out)
+
+ return out
diff --git a/hymm_sp/modules/audio_adapters.py b/hymm_sp/modules/audio_adapters.py
new file mode 100644
index 0000000000000000000000000000000000000000..00a6f9ed61c9faf9c1f5322a691c15de741f9692
--- /dev/null
+++ b/hymm_sp/modules/audio_adapters.py
@@ -0,0 +1,228 @@
+"""
+This module provides the implementation of an Audio Projection Model, which is designed for
+audio processing tasks. The model takes audio embeddings as input and outputs context tokens
+that can be used for various downstream applications, such as audio analysis or synthesis.
+
+The AudioProjModel class is based on the ModelMixin class from the diffusers library, which
+provides a foundation for building custom models. This implementation includes multiple linear
+layers with ReLU activation functions and a LayerNorm for normalization.
+
+Key Features:
+- Audio embedding input with flexible sequence length and block structure.
+- Multiple linear layers for feature transformation.
+- ReLU activation for non-linear transformation.
+- LayerNorm for stabilizing and speeding up training.
+- Rearrangement of input embeddings to match the model's expected input shape.
+- Customizable number of blocks, channels, and context tokens for adaptability.
+
+The module is structured to be easily integrated into larger systems or used as a standalone
+component for audio feature extraction and processing.
+
+Classes:
+- AudioProjModel: A class representing the audio projection model with configurable parameters.
+
+Functions:
+- (none)
+
+Dependencies:
+- torch: For tensor operations and neural network components.
+- diffusers: For the ModelMixin base class.
+- einops: For tensor rearrangement operations.
+
+"""
+
+import torch
+from diffusers import ModelMixin
+from einops import rearrange
+
+import math
+import torch.nn as nn
+from .parallel_states import (
+ initialize_sequence_parallel_state,
+ nccl_info,
+ get_sequence_parallel_state,
+ parallel_attention,
+ all_gather,
+ all_to_all_4D,
+)
+
+class AudioProjNet2(ModelMixin):
+ """Audio Projection Model
+
+ This class defines an audio projection model that takes audio embeddings as input
+ and produces context tokens as output. The model is based on the ModelMixin class
+ and consists of multiple linear layers and activation functions. It can be used
+ for various audio processing tasks.
+
+ Attributes:
+ seq_len (int): The length of the audio sequence.
+ blocks (int): The number of blocks in the audio projection model.
+ channels (int): The number of channels in the audio projection model.
+ intermediate_dim (int): The intermediate dimension of the model.
+ context_tokens (int): The number of context tokens in the output.
+ output_dim (int): The output dimension of the context tokens.
+
+ Methods:
+ __init__(self, seq_len=5, blocks=12, channels=768, intermediate_dim=512, context_tokens=32, output_dim=768):
+ Initializes the AudioProjModel with the given parameters.
+ forward(self, audio_embeds):
+ Defines the forward pass for the AudioProjModel.
+ Parameters:
+ audio_embeds (torch.Tensor): The input audio embeddings with shape (batch_size, video_length, blocks, channels).
+ Returns:
+ context_tokens (torch.Tensor): The output context tokens with shape (batch_size, video_length, context_tokens, output_dim).
+
+ """
+
+ def __init__(
+ self,
+ seq_len=5,
+ blocks=12, # add a new parameter blocks
+ channels=768, # add a new parameter channels
+ intermediate_dim=512,
+ output_dim=768,
+ context_tokens=4,
+ ):
+ super().__init__()
+
+ self.seq_len = seq_len
+ self.blocks = blocks
+ self.channels = channels
+ self.input_dim = (
+ seq_len * blocks * channels
+ )
+ self.intermediate_dim = intermediate_dim
+ self.context_tokens = context_tokens
+ self.output_dim = output_dim
+
+ # define multiple linear layers
+ self.proj1 = nn.Linear(self.input_dim, intermediate_dim)
+ self.proj2 = nn.Linear(intermediate_dim, intermediate_dim)
+ self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim)
+
+ self.norm = nn.LayerNorm(output_dim)
+
+
+ def forward(self, audio_embeds):
+
+ video_length = audio_embeds.shape[1]
+ audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
+ batch_size, window_size, blocks, channels = audio_embeds.shape
+ audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
+
+ audio_embeds = torch.relu(self.proj1(audio_embeds))
+ audio_embeds = torch.relu(self.proj2(audio_embeds))
+
+ context_tokens = self.proj3(audio_embeds).reshape(
+ batch_size, self.context_tokens, self.output_dim
+ )
+ context_tokens = self.norm(context_tokens)
+ out_all = rearrange(
+ context_tokens, "(bz f) m c -> bz f m c", f=video_length
+ )
+
+ return out_all
+
+
+def reshape_tensor(x, heads):
+ bs, length, width = x.shape
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
+ x = x.view(bs, length, heads, -1)
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
+ x = x.transpose(1, 2)
+ # (bs, n_heads, length, dim_per_head)
+ x = x.reshape(bs, heads, length, -1)
+ return x
+
+
+class PerceiverAttentionCA(nn.Module):
+ def __init__(self, *, dim=3072, dim_head=1024, heads=33):
+ super().__init__()
+ self.scale = dim_head ** -0.5
+ self.dim_head = dim_head
+ self.heads = heads
+ inner_dim = dim_head #* heads
+
+ self.norm1 = nn.LayerNorm(dim)
+ self.norm2 = nn.LayerNorm(dim)
+
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
+
+ import torch.nn.init as init
+ init.zeros_(self.to_out.weight)
+ if self.to_out.bias is not None:
+ init.zeros_(self.to_out.bias)
+
+ def forward(self, x, latents):
+ """
+ Args:
+ x (torch.Tensor): image features
+ shape (b, t, aa, D)
+ latent (torch.Tensor): latent features
+ shape (b, t, hw, D)
+ """
+ x = self.norm1(x)
+ latents = self.norm2(latents)
+ # print("latents shape: ", latents.shape)
+ # print("x shape: ", x.shape)
+ q = self.to_q(latents)
+ k, v = self.to_kv(x).chunk(2, dim=-1)
+
+
+ # attention
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
+ out = weight @ v
+
+ # out = out.permute(0, 2, 1, 3)
+ return self.to_out(out)
+ #def forward(self, x, latents):
+ # """
+ # Args:
+ # x (torch.Tensor): image features
+ # shape (b, t, aa, D)
+ # latent (torch.Tensor): latent features
+ # shape (b, t, hw, D)
+ # """
+ # if get_sequence_parallel_state():
+ # sp_size = nccl_info.sp_size
+ # sp_rank = nccl_info.rank_within_group
+ # print("rank:", latents.shape, sp_size, sp_rank)
+ # latents = torch.chunk(latents, sp_size, dim=1)[sp_rank]
+
+ # x = self.norm1(x)
+ # latents = self.norm2(latents)
+ # # print("latents shape: ", latents.shape)
+ # # print("x shape: ", x.shape)
+ # q = self.to_q(latents)
+ # k, v = self.to_kv(x).chunk(2, dim=-1)
+
+ # # print("q, k, v: ", q.shape, k.shape, v.shape)
+
+ # # attention
+ # #scale = 1 / math.sqrt(math.sqrt(self.dim_head))
+ # #weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
+ # #weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
+ # #out = weight @ v
+ # def shrink_head(encoder_state, dim):
+ # local_heads = encoder_state.shape[dim] // nccl_info.sp_size
+ # return encoder_state.narrow(dim, nccl_info.rank_within_group * local_heads, local_heads)
+
+ # if get_sequence_parallel_state():
+ # # batch_size, seq_len, attn_heads, head_dim
+ # q = all_to_all_4D(q, scatter_dim=2, gather_dim=1) # [2, 32256, 24, 128]
+ # k = shrink_head(k ,dim=2)
+ # v = shrink_head(v ,dim=2)
+ # qkv = torch.stack([query, key, value], dim=2)
+ # attn = flash_attn_no_pad(qkv, causal=False, dropout_p=0.0, softmax_scale=None)
+ # # out = out.permute(0, 2, 1, 3)
+ # #b, s, a, d = attn.shape
+ # #attn = attn.reshape(b, s, -1)
+ #
+ # out = self.to_out(attn)
+ # if get_sequence_parallel_state():
+ # out = all_gather(out, dim=1)
+ # return out
diff --git a/hymm_sp/modules/embed_layers.py b/hymm_sp/modules/embed_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..01e42180c212656fd871507035da0d63ef5b93bc
--- /dev/null
+++ b/hymm_sp/modules/embed_layers.py
@@ -0,0 +1,135 @@
+import math
+import torch
+import torch.nn as nn
+from hymm_sp.helpers import to_2tuple
+
+
+class PatchEmbed(nn.Module):
+ """ 2D Image to Patch Embedding
+
+ Image to Patch Embedding using Conv2d
+
+ A convolution based approach to patchifying a 2D image w/ embedding projection.
+
+ Based on the impl in https://github.com/google-research/vision_transformer
+
+ Hacked together by / Copyright 2020 Ross Wightman
+
+ Remove the _assert function in forward function to be compatible with multi-resolution images.
+ """
+ def __init__(
+ self,
+ patch_size=16,
+ in_chans=3,
+ embed_dim=768,
+ norm_layer=None,
+ flatten=True,
+ bias=True,
+ dtype=None,
+ device=None
+ ):
+ factory_kwargs = {'dtype': dtype, 'device': device}
+ super().__init__()
+ patch_size = to_2tuple(patch_size)
+ self.patch_size = patch_size
+ self.flatten = flatten
+
+ self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias,
+ **factory_kwargs)
+ nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1))
+ if bias:
+ nn.init.zeros_(self.proj.bias)
+
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
+
+ def forward(self, x):
+ x = self.proj(x)
+ shape = x.shape
+ if self.flatten:
+ x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
+ x = self.norm(x)
+ return x, shape
+
+
+class TextProjection(nn.Module):
+ """
+ Projects text embeddings. Also handles dropout for classifier-free guidance.
+
+ Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
+ """
+
+ def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None):
+ factory_kwargs = {'dtype': dtype, 'device': device}
+ super().__init__()
+ self.linear_1 = nn.Linear(in_features=in_channels, out_features=hidden_size, bias=True, **factory_kwargs)
+ self.act_1 = act_layer()
+ self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True, **factory_kwargs)
+
+ def forward(self, caption):
+ hidden_states = self.linear_1(caption)
+ hidden_states = self.act_1(hidden_states)
+ hidden_states = self.linear_2(hidden_states)
+ return hidden_states
+
+
+def timestep_embedding(t, dim, max_period=10000):
+ """
+ Create sinusoidal timestep embeddings.
+
+ Args:
+ t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional.
+ dim (int): the dimension of the output.
+ max_period (int): controls the minimum frequency of the embeddings.
+
+ Returns:
+ embedding (torch.Tensor): An (N, D) Tensor of positional embeddings.
+
+ .. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
+ """
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period)
+ * torch.arange(start=0, end=half, dtype=torch.float32)
+ / half
+ ).to(device=t.device)
+ args = t[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat(
+ [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
+ )
+ return embedding
+
+
+class TimestepEmbedder(nn.Module):
+ """
+ Embeds scalar timesteps into vector representations.
+ """
+ def __init__(self,
+ hidden_size,
+ act_layer,
+ frequency_embedding_size=256,
+ max_period=10000,
+ out_size=None,
+ dtype=None,
+ device=None
+ ):
+ factory_kwargs = {'dtype': dtype, 'device': device}
+ super().__init__()
+ self.frequency_embedding_size = frequency_embedding_size
+ self.max_period = max_period
+ if out_size is None:
+ out_size = hidden_size
+
+ self.mlp = nn.Sequential(
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True, **factory_kwargs),
+ act_layer(),
+ nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs),
+ )
+ nn.init.normal_(self.mlp[0].weight, std=0.02)
+ nn.init.normal_(self.mlp[2].weight, std=0.02)
+
+ def forward(self, t):
+ t_freq = timestep_embedding(t, self.frequency_embedding_size, self.max_period).type(self.mlp[0].weight.dtype)
+ t_emb = self.mlp(t_freq)
+ return t_emb
\ No newline at end of file
diff --git a/hymm_sp/modules/fp8_optimization.py b/hymm_sp/modules/fp8_optimization.py
new file mode 100644
index 0000000000000000000000000000000000000000..267abcf16f4c2a6979090cd3c10bf677e30d8f54
--- /dev/null
+++ b/hymm_sp/modules/fp8_optimization.py
@@ -0,0 +1,100 @@
+import os
+
+import torch
+import torch.nn as nn
+from torch.nn import functional as F
+
+def get_fp_maxval(bits=8, mantissa_bit=3, sign_bits=1):
+ _bits = torch.tensor(bits)
+ _mantissa_bit = torch.tensor(mantissa_bit)
+ _sign_bits = torch.tensor(sign_bits)
+ M = torch.clamp(torch.round(_mantissa_bit), 1, _bits - _sign_bits)
+ E = _bits - _sign_bits - M
+ bias = 2 ** (E - 1) - 1
+ mantissa = 1
+ for i in range(mantissa_bit - 1):
+ mantissa += 1 / (2 ** (i+1))
+ maxval = mantissa * 2 ** (2**E - 1 - bias)
+ return maxval
+
+def quantize_to_fp8(x, bits=8, mantissa_bit=3, sign_bits=1):
+ """
+ Default is E4M3.
+ """
+ bits = torch.tensor(bits)
+ mantissa_bit = torch.tensor(mantissa_bit)
+ sign_bits = torch.tensor(sign_bits)
+ M = torch.clamp(torch.round(mantissa_bit), 1, bits - sign_bits)
+ E = bits - sign_bits - M
+ bias = 2 ** (E - 1) - 1
+ mantissa = 1
+ for i in range(mantissa_bit - 1):
+ mantissa += 1 / (2 ** (i+1))
+ maxval = mantissa * 2 ** (2**E - 1 - bias)
+ minval = - maxval
+ minval = - maxval if sign_bits == 1 else torch.zeros_like(maxval)
+ input_clamp = torch.min(torch.max(x, minval), maxval)
+ log_scales = torch.clamp((torch.floor(torch.log2(torch.abs(input_clamp)) + bias)).detach(), 1.0)
+ log_scales = 2.0 ** (log_scales - M - bias.type(x.dtype))
+ # dequant
+ qdq_out = torch.round(input_clamp / log_scales) * log_scales
+ return qdq_out, log_scales
+
+def fp8_tensor_quant(x, scale, bits=8, mantissa_bit=3, sign_bits=1):
+ for i in range(len(x.shape) - 1):
+ scale = scale.unsqueeze(-1)
+ new_x = x / scale
+ quant_dequant_x, log_scales = quantize_to_fp8(new_x, bits=bits, mantissa_bit=mantissa_bit, sign_bits=sign_bits)
+ return quant_dequant_x, scale, log_scales
+
+def fp8_activation_dequant(qdq_out, scale, dtype):
+ qdq_out = qdq_out.type(dtype)
+ quant_dequant_x = qdq_out * scale.to(dtype)
+ return quant_dequant_x
+
+def fp8_linear_forward(cls, original_dtype, input):
+ weight_dtype = cls.weight.dtype
+ #####
+ if cls.weight.dtype != torch.float8_e4m3fn:
+ maxval = get_fp_maxval()
+ scale = torch.max(torch.abs(cls.weight.flatten())) / maxval
+ linear_weight, scale, log_scales = fp8_tensor_quant(cls.weight, scale)
+ linear_weight = linear_weight.to(torch.float8_e4m3fn)
+ weight_dtype = linear_weight.dtype
+ else:
+ scale = cls.fp8_scale.to(cls.weight.device)
+ linear_weight = cls.weight
+ #####
+
+ if weight_dtype == torch.float8_e4m3fn and cls.weight.sum() != 0:
+ if True or len(input.shape) == 3:
+ cls_dequant = fp8_activation_dequant(linear_weight, scale, original_dtype)
+ if cls.bias != None:
+ output = F.linear(input, cls_dequant, cls.bias)
+ else:
+ output = F.linear(input, cls_dequant)
+ return output
+ else:
+ return cls.original_forward(input.to(original_dtype))
+ else:
+ return cls.original_forward(input)
+
+def convert_fp8_linear(module, dit_weight_path, original_dtype, params_to_keep={}):
+ setattr(module, "fp8_matmul_enabled", True)
+
+ # loading fp8 mapping file
+ fp8_map_path = dit_weight_path.replace('.pt', '_map.pt')
+ if os.path.exists(fp8_map_path):
+ fp8_map = torch.load(fp8_map_path, map_location=lambda storage, loc: storage)['module']
+ else:
+ raise ValueError(f"Invalid fp8_map path: {fp8_map_path}.")
+
+ fp8_layers = []
+ for key, layer in module.named_modules():
+ if isinstance(layer, nn.Linear) and ('double_blocks' in key or 'single_blocks' in key):
+ fp8_layers.append(key)
+ original_forward = layer.forward
+ layer.weight = torch.nn.Parameter(layer.weight.to(torch.float8_e4m3fn))
+ setattr(layer, "fp8_scale", fp8_map[key].to(dtype=original_dtype))
+ setattr(layer, "original_forward", original_forward)
+ setattr(layer, "forward", lambda input, m=layer: fp8_linear_forward(m, original_dtype, input))
\ No newline at end of file
diff --git a/hymm_sp/modules/mlp_layers.py b/hymm_sp/modules/mlp_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..efaa2a6be1e8b14d4810c4c30e06e0d2a0b67641
--- /dev/null
+++ b/hymm_sp/modules/mlp_layers.py
@@ -0,0 +1,95 @@
+# Modified from timm library:
+# https://github.com/huggingface/pytorch-image-models/blob/648aaa41233ba83eb38faf5ba9d415d574823241/timm/layers/mlp.py#L13
+
+from functools import partial
+
+import torch
+import torch.nn as nn
+
+from .modulate_layers import modulate
+from hymm_sp.helpers import to_2tuple
+
+
+class MLP(nn.Module):
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks
+ """
+ def __init__(self,
+ in_channels,
+ hidden_channels=None,
+ out_features=None,
+ act_layer=nn.GELU,
+ norm_layer=None,
+ bias=True,
+ drop=0.,
+ use_conv=False,
+ device=None,
+ dtype=None
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+ out_features = out_features or in_channels
+ hidden_channels = hidden_channels or in_channels
+ bias = to_2tuple(bias)
+ drop_probs = to_2tuple(drop)
+ linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
+
+ self.fc1 = linear_layer(in_channels, hidden_channels, bias=bias[0], **factory_kwargs)
+ self.act = act_layer()
+ self.drop1 = nn.Dropout(drop_probs[0])
+ self.norm = norm_layer(hidden_channels, **factory_kwargs) if norm_layer is not None else nn.Identity()
+ self.fc2 = linear_layer(hidden_channels, out_features, bias=bias[1], **factory_kwargs)
+ self.drop2 = nn.Dropout(drop_probs[1])
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop1(x)
+ x = self.norm(x)
+ x = self.fc2(x)
+ x = self.drop2(x)
+ return x
+
+
+class MLPEmbedder(nn.Module):
+ """copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py"""
+ def __init__(self, in_dim: int, hidden_dim: int, device=None, dtype=None):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True, **factory_kwargs)
+ self.silu = nn.SiLU()
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True, **factory_kwargs)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.out_layer(self.silu(self.in_layer(x)))
+
+
+class FinalLayer(nn.Module):
+ """The final layer of DiT."""
+
+ def __init__(self, hidden_size, patch_size, out_channels, act_layer, device=None, dtype=None):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+
+ # Just use LayerNorm for the final layer
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
+ if isinstance(patch_size, int):
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, **factory_kwargs)
+ else:
+ self.linear = nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels, bias=True)
+ nn.init.zeros_(self.linear.weight)
+ nn.init.zeros_(self.linear.bias)
+
+ # Here we don't distinguish between the modulate types. Just use the simple one.
+ self.adaLN_modulation = nn.Sequential(
+ act_layer(),
+ nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs)
+ )
+ # Zero-initialize the modulation
+ nn.init.zeros_(self.adaLN_modulation[1].weight)
+ nn.init.zeros_(self.adaLN_modulation[1].bias)
+
+ def forward(self, x, c):
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
+ x = modulate(self.norm_final(x), shift=shift, scale=scale)
+ x = self.linear(x)
+ return x
diff --git a/hymm_sp/modules/models_audio.py b/hymm_sp/modules/models_audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..7303fd2a3949ea46ed1181dea0363ab3da59facc
--- /dev/null
+++ b/hymm_sp/modules/models_audio.py
@@ -0,0 +1,745 @@
+from typing import List, Tuple, Optional, Union, Dict
+from einops import rearrange
+
+import torch, os
+import torch.nn as nn
+import torch.nn.functional as F
+from diffusers.models import ModelMixin
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+from flash_attn.flash_attn_interface import flash_attn_varlen_func
+
+from .activation_layers import get_activation_layer
+from .norm_layers import get_norm_layer
+from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
+from .attn_layers import apply_rotary_emb
+from .mlp_layers import MLP, MLPEmbedder, FinalLayer
+from .modulate_layers import ModulateDiT, modulate, apply_gate
+from .token_refiner import SingleTokenRefiner
+from .audio_adapters import AudioProjNet2, PerceiverAttentionCA
+
+from .parallel_states import (
+ nccl_info,
+ get_cu_seqlens,
+ get_sequence_parallel_state,
+ parallel_attention,
+ all_gather,
+)
+
+CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0))
+DISABLE_SP = int(os.environ.get("DISABLE_SP", 0))
+print(f'models: cpu_offload={CPU_OFFLOAD}, DISABLE_SP={DISABLE_SP}')
+
+class DoubleStreamBlock(nn.Module):
+ def __init__(
+ self,
+ hidden_size: int,
+ num_heads: int,
+ mlp_width_ratio: float,
+ mlp_act_type: str = 'gelu_tanh',
+ qk_norm: bool = True,
+ qk_norm_type: str = 'rms',
+ qkv_bias: bool = False,
+ dtype: Optional[torch.dtype] = None,
+ device: Optional[torch.device] = None,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+
+ self.deterministic = False
+ self.num_heads = num_heads
+ head_dim = hidden_size // num_heads
+ mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
+
+ self.img_mod = ModulateDiT(hidden_size, factor=6, act_layer=get_activation_layer("silu"), **factory_kwargs)
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
+
+ self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
+ qk_norm_layer = get_norm_layer(qk_norm_type)
+ self.img_attn_q_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.img_attn_k_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
+
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
+ self.img_mlp = MLP(
+ hidden_size,
+ mlp_hidden_dim,
+ act_layer=get_activation_layer(mlp_act_type),
+ bias=True,
+ **factory_kwargs
+ )
+
+ self.txt_mod = ModulateDiT(hidden_size, factor=6, act_layer=get_activation_layer("silu"), **factory_kwargs)
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
+
+ self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
+ qk_norm_layer = get_norm_layer(qk_norm_type)
+ self.txt_attn_q_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.txt_attn_k_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
+
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
+ self.txt_mlp = MLP(
+ hidden_size,
+ mlp_hidden_dim,
+ act_layer=get_activation_layer(mlp_act_type),
+ bias=True,
+ **factory_kwargs
+ )
+
+ def enable_deterministic(self):
+ self.deterministic = True
+
+ def disable_deterministic(self):
+ self.deterministic = False
+
+ def forward(
+ self,
+ img: torch.Tensor,
+ txt: torch.Tensor,
+ vec: torch.Tensor,
+ cu_seqlens_q: Optional[torch.Tensor] = None,
+ cu_seqlens_kv: Optional[torch.Tensor] = None,
+ max_seqlen_q: Optional[int] = None,
+ max_seqlen_kv: Optional[int] = None,
+ freqs_cis: tuple = None
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = (
+ self.img_mod(vec).chunk(6, dim=-1)
+ )
+ txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = (
+ self.txt_mod(vec).chunk(6, dim=-1)
+ )
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Prepare image for attention.
+ img_modulated = self.img_norm1(img)
+ img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale)
+ img_qkv = self.img_attn_qkv(img_modulated)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
+ # Apply QK-Norm if needed
+ img_q = self.img_attn_q_norm(img_q).to(img_v)
+ img_k = self.img_attn_k_norm(img_k).to(img_v)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Apply RoPE if needed.
+ if freqs_cis is not None:
+ img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
+ assert img_qq.shape == img_q.shape and img_kk.shape == img_k.shape, \
+ f'img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}'
+ img_q, img_k = img_qq, img_kk
+
+ # Prepare txt for attention.
+ txt_modulated = self.txt_norm1(txt)
+ txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ txt_qkv = self.txt_attn_qkv(txt_modulated)
+ txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
+ # Apply QK-Norm if needed.
+ txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
+ txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Run actual attention.
+ q = torch.cat((img_q, txt_q), dim=1)
+ k = torch.cat((img_k, txt_k), dim=1)
+ v = torch.cat((img_v, txt_v), dim=1)
+
+ # Compute attention.
+ if CPU_OFFLOAD or DISABLE_SP:
+ assert cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
+
+ q, k, v = [
+ x.view(x.shape[0] * x.shape[1], *x.shape[2:])
+ for x in [q, k, v]
+ ]
+ attn = flash_attn_varlen_func(
+ q,
+ k,
+ v,
+ cu_seqlens_q,
+ cu_seqlens_kv,
+ max_seqlen_q,
+ max_seqlen_kv,
+ )
+ attn = attn.view(img_k.shape[0], max_seqlen_q, -1).contiguous()
+ else:
+ attn, _ = parallel_attention(
+ (img_q, txt_q),
+ (img_k, txt_k),
+ (img_v, txt_v),
+ img_q_len=img_q.shape[1],
+ img_kv_len=img_k.shape[1],
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_kv=cu_seqlens_kv,
+ max_seqlen_q=max_seqlen_q,
+ max_seqlen_kv=max_seqlen_kv,
+ )
+ img_attn, txt_attn = attn[:, :img.shape[1]], attn[:, img.shape[1]:]
+
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Calculate the img bloks.
+ img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
+ img = img + apply_gate(self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)), gate=img_mod2_gate)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ # Calculate the txt bloks.
+ txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
+ txt = txt + apply_gate(self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)), gate=txt_mod2_gate)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ return img, txt
+
+
+class SingleStreamBlock(nn.Module):
+ """
+ A DiT block with parallel linear layers as described in
+ https://arxiv.org/abs/2302.05442 and adapted modulation interface.
+ """
+
+ def __init__(
+ self,
+ hidden_size: int,
+ num_heads: int,
+ mlp_width_ratio: float = 4.0,
+ mlp_act_type: str = 'gelu_tanh',
+ qk_norm: bool = True,
+ qk_norm_type: str = 'rms',
+ qk_scale: float = None,
+ dtype: Optional[torch.dtype] = None,
+ device: Optional[torch.device] = None,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+
+ self.deterministic = False
+ self.hidden_size = hidden_size
+ self.num_heads = num_heads
+ head_dim = hidden_size // num_heads
+ mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
+ self.mlp_hidden_dim = mlp_hidden_dim
+ self.scale = qk_scale or head_dim**-0.5
+
+ # qkv and mlp_in
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs)
+ # proj and mlp_out
+ self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs)
+
+ qk_norm_layer = get_norm_layer(qk_norm_type)
+ self.q_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.k_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
+
+ self.mlp_act = get_activation_layer(mlp_act_type)()
+ self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs)
+
+ def enable_deterministic(self):
+ self.deterministic = True
+
+ def disable_deterministic(self):
+ self.deterministic = False
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ vec: torch.Tensor,
+ txt_len: int,
+ cu_seqlens_q: Optional[torch.Tensor] = None,
+ cu_seqlens_kv: Optional[torch.Tensor] = None,
+ max_seqlen_q: Optional[int] = None,
+ max_seqlen_kv: Optional[int] = None,
+ freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
+ ) -> torch.Tensor:
+ mod_shift, mod_scale, mod_gate = (
+ self.modulation(vec).chunk(3, dim=-1)
+ )
+ x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
+
+ q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Apply QK-Norm if needed.
+ q = self.q_norm(q).to(v)
+ k = self.k_norm(k).to(v)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Apply RoPE if needed.
+ if freqs_cis is not None:
+ img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
+ img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
+ img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
+ assert img_qq.shape == img_q.shape and img_kk.shape == img_k.shape, \
+ f'img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}'
+ img_q, img_k = img_qq, img_kk
+ q = torch.cat((img_q, txt_q), dim=1)
+ k = torch.cat((img_k, txt_k), dim=1)
+
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Compute attention.
+ if CPU_OFFLOAD or DISABLE_SP:
+ assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
+ # [b, s+l, a, d] -> [s+l, b, a, d]
+ q, k, v = [
+ x.view(x.shape[0] * x.shape[1], *x.shape[2:])
+ for x in [q, k, v]
+ ]
+
+ attn = flash_attn_varlen_func(
+ q,
+ k,
+ v,
+ cu_seqlens_q,
+ cu_seqlens_kv,
+ max_seqlen_q,
+ max_seqlen_kv,
+ )
+ attn = attn.view(x.shape[0], max_seqlen_q, -1).contiguous()
+ else:
+ img_v, txt_v = v[:, :-txt_len, :, :], v[:, -txt_len:, :, :]
+ attn, _ = parallel_attention(
+ (img_q, txt_q),
+ (img_k, txt_k),
+ (img_v, txt_v),
+ img_q_len=img_q.shape[1],
+ img_kv_len=img_k.shape[1],
+ cu_seqlens_q=cu_seqlens_q,
+ cu_seqlens_kv=cu_seqlens_kv,
+ max_seqlen_q=max_seqlen_q,
+ max_seqlen_kv=max_seqlen_kv,
+ )
+ if CPU_OFFLOAD:
+ torch.cuda.empty_cache()
+ tmp = torch.cat((attn, self.mlp_act(mlp)), 2)
+ torch.cuda.empty_cache()
+ output = self.linear2(tmp)
+ else:
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
+ return x + apply_gate(output, gate=mod_gate)
+
+
+class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
+ """
+ HunyuanVideo Transformer backbone
+
+ Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
+
+ Reference:
+ [1] Flux.1: https://github.com/black-forest-labs/flux
+ [2] MMDiT: http://arxiv.org/abs/2403.03206,
+ https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py
+
+ """
+ @register_to_config
+ def __init__(
+ self,
+ args,
+ patch_size: list = [1,2,2],
+ in_channels: int = 4, # Should be VAE.config.latent_channels.
+ out_channels: int = None,
+ hidden_size: int = 3072,
+ mlp_width_ratio: float = 4.0,
+ mlp_act_type: str = 'gelu_tanh',
+ num_heads: int = 24,
+ depth_double_blocks: int = 19,
+ depth_single_blocks: int = 38,
+ rope_dim_list: List[int] = [16, 56, 56],
+ qkv_bias: bool = True,
+ qk_norm: bool = True,
+ qk_norm_type: str = 'rms',
+ guidance_embed: bool = False, # For modulation.
+ dtype: Optional[torch.dtype] = None,
+ device: Optional[torch.device] = None,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+
+ # Text projection. Default to linear projection.
+ # Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
+ self.text_projection = args.text_projection
+ self.text_states_dim = args.text_states_dim
+ self.use_attention_mask = args.use_attention_mask
+ self.text_states_dim_2 = args.text_states_dim_2
+
+ # Now we only use above configs from args.
+ self.patch_size = patch_size
+ self.in_channels = in_channels
+ self.out_channels = in_channels if out_channels is None else out_channels
+ self.unpatchify_channels = self.out_channels
+ self.guidance_embed = guidance_embed
+ self.rope_dim_list = rope_dim_list
+
+ if hidden_size % num_heads != 0:
+ raise ValueError(
+ f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
+ )
+ pe_dim = hidden_size // num_heads
+ if sum(rope_dim_list) != pe_dim:
+ raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}")
+ self.hidden_size = hidden_size
+ self.num_heads = num_heads
+
+ # image projection
+ self.img_in = PatchEmbed(
+ self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
+ )
+ self.ref_in = PatchEmbed(
+ self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
+ )
+
+ # text projection
+ if self.text_projection == "linear":
+ self.txt_in = TextProjection(
+ self.text_states_dim,
+ self.hidden_size,
+ get_activation_layer("silu"),
+ **factory_kwargs
+ )
+ elif self.text_projection == "single_refiner":
+ self.txt_in = SingleTokenRefiner(
+ self.text_states_dim, hidden_size, num_heads, depth=2, **factory_kwargs
+ )
+ else:
+ raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
+
+ # time modulation
+ self.time_in = TimestepEmbedder(
+ self.hidden_size, get_activation_layer("silu"), **factory_kwargs
+ )
+
+ # text modulation
+ self.vector_in = MLPEmbedder(
+ self.text_states_dim_2, self.hidden_size, **factory_kwargs
+ )
+
+ # guidance modulation
+ self.guidance_in = TimestepEmbedder(
+ self.hidden_size, get_activation_layer("silu"), **factory_kwargs
+ ) if guidance_embed else None
+
+ # double blocks
+ self.double_blocks = nn.ModuleList(
+ [
+ DoubleStreamBlock(
+ self.hidden_size,
+ self.num_heads,
+ mlp_width_ratio=mlp_width_ratio,
+ mlp_act_type=mlp_act_type,
+ qk_norm=qk_norm,
+ qk_norm_type=qk_norm_type,
+ qkv_bias=qkv_bias,
+ **factory_kwargs
+ )
+ for _ in range(depth_double_blocks)
+ ]
+ )
+
+ # single blocks
+ self.single_blocks = nn.ModuleList(
+ [
+ SingleStreamBlock(
+ self.hidden_size,
+ self.num_heads,
+ mlp_width_ratio=mlp_width_ratio,
+ mlp_act_type=mlp_act_type,
+ qk_norm=qk_norm,
+ qk_norm_type=qk_norm_type,
+ **factory_kwargs
+ )
+ for _ in range(depth_single_blocks)
+ ]
+ )
+
+ self.final_layer = FinalLayer(
+ self.hidden_size,
+ self.patch_size,
+ self.out_channels,
+ get_activation_layer("silu"),
+ **factory_kwargs
+ )
+ # -------------------- audio_proj_model --------------------
+ self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4)
+
+ # -------------------- motion-embeder --------------------
+ self.motion_exp = TimestepEmbedder(
+ self.hidden_size // 4,
+ get_activation_layer("silu"),
+ **factory_kwargs
+ )
+ self.motion_pose = TimestepEmbedder(
+ self.hidden_size // 4,
+ get_activation_layer("silu"),
+ **factory_kwargs
+ )
+
+ self.fps_proj = TimestepEmbedder(
+ self.hidden_size,
+ get_activation_layer("silu"),
+ **factory_kwargs
+ )
+
+ self.before_proj = nn.Linear(self.hidden_size, self.hidden_size)
+
+ # -------------------- audio_insert_model --------------------
+ self.double_stream_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
+ self.single_stream_list = []
+ self.double_stream_map = {str(i): j for j, i in enumerate(self.double_stream_list)}
+ self.single_stream_map = {str(i): j+len(self.double_stream_list) for j, i in enumerate(self.single_stream_list)}
+
+ self.audio_adapter_blocks = nn.ModuleList([
+ PerceiverAttentionCA(dim=3072, dim_head=1024, heads=33) for _ in range(len(self.double_stream_list) + len(self.single_stream_list))
+ ])
+
+
+
+ def enable_deterministic(self):
+ for block in self.double_blocks:
+ block.enable_deterministic()
+ for block in self.single_blocks:
+ block.enable_deterministic()
+
+ def disable_deterministic(self):
+ for block in self.double_blocks:
+ block.disable_deterministic()
+ for block in self.single_blocks:
+ block.disable_deterministic()
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ t: torch.Tensor, # Should be in range(0, 1000).
+ ref_latents: torch.Tensor=None,
+ text_states: torch.Tensor = None,
+ text_mask: torch.Tensor = None, # Now we don't use it.
+ text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
+ freqs_cos: Optional[torch.Tensor] = None,
+ freqs_sin: Optional[torch.Tensor] = None,
+ guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
+ return_dict: bool = True,
+ is_cache: bool = False,
+ **additional_kwargs,
+ ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
+ out = {}
+ img = x
+ txt = text_states
+ bsz, _, ot, oh, ow = x.shape
+ tt, th, tw = ot // self.patch_size[0], oh // self.patch_size[1], ow // self.patch_size[2]
+
+ # Prepare modulation vectors.
+ vec = self.time_in(t)
+
+ motion_exp_vec = self.motion_exp(additional_kwargs["motion_exp"].view(-1)).view(x.shape[0], -1) # (b, 3072)
+ vec = vec + motion_exp_vec
+ motion_pose_vec = self.motion_pose(additional_kwargs["motion_pose"].view(-1)).view(x.shape[0], -1) # (b, 3072)
+ vec = vec + motion_pose_vec
+ fps_vec = self.fps_proj(additional_kwargs["fps"]) # (b, 3072)
+ vec = vec + fps_vec
+ audio_feature_all = self.audio_proj(additional_kwargs["audio_prompts"])
+
+ # text modulation
+ vec = vec + self.vector_in(text_states_2)
+
+ # guidance modulation
+ if self.guidance_embed:
+ if guidance is None:
+ raise ValueError("Didn't get guidance strength for guidance distilled model.")
+ else:
+ # our timestep_embedding is merged into guidance_in(TimestepEmbedder)
+ vec = vec + self.guidance_in(guidance)
+
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ # Embed image and text.
+ ref_latents_first = ref_latents[:, :, :1].clone()
+ img, shape_mask = self.img_in(img)
+ ref_latents,_ = self.ref_in(ref_latents)
+ ref_latents_first,_ = self.img_in(ref_latents_first)
+ if self.text_projection == "linear":
+ txt = self.txt_in(txt)
+ elif self.text_projection == "single_refiner":
+ # [b, l, h]
+ txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
+ else:
+ raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
+ img = self.before_proj(ref_latents) + img
+
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ ref_length = ref_latents_first.shape[-2] # [b s c]
+ img = torch.cat([ref_latents_first, img], dim=-2) # t c
+ img_len = img.shape[1]
+ mask_len = img_len - ref_length
+ if additional_kwargs["face_mask"].shape[2] == 1:
+ face_mask = additional_kwargs["face_mask"].repeat(1,1,ot,1,1) # repeat if number of mask frame is 1
+ else:
+ face_mask = additional_kwargs["face_mask"]
+ face_mask = torch.nn.functional.interpolate(face_mask, size=[ot, shape_mask[-2], shape_mask[-1]], mode="nearest")
+ face_mask = face_mask.view(-1,mask_len,1).repeat(1,1,img.shape[-1]).type_as(img)
+
+
+ txt_seq_len = txt.shape[1]
+ img_seq_len = img.shape[1]
+
+ cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
+ cu_seqlens_kv = cu_seqlens_q
+ max_seqlen_q = img_seq_len + txt_seq_len
+ max_seqlen_kv = max_seqlen_q
+
+ if get_sequence_parallel_state():
+ sp_size = nccl_info.sp_size
+ sp_rank = nccl_info.rank_within_group
+ assert img.shape[1] % sp_size == 0, f"Cannot split video sequence into ulysses SP ({sp_size}) parts evenly"
+ img = torch.chunk(img, sp_size, dim=1)[sp_rank]
+ freqs_cos = torch.chunk(freqs_cos, sp_size, dim=0)[sp_rank]
+ freqs_sin = torch.chunk(freqs_sin, sp_size, dim=0)[sp_rank]
+
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
+ # --------------------- Pass through DiT blocks ------------------------
+ if not is_cache:
+ for layer_num, block in enumerate(self.double_blocks):
+ double_block_args = [img, txt, vec, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, freqs_cis]
+ img, txt = block(*double_block_args)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ """ insert audio feature to img """
+ if layer_num in self.double_stream_list:
+ if get_sequence_parallel_state():
+ img = all_gather(img, dim=1)
+
+ real_img = img[:,ref_length:].clone().view(bsz, ot, -1, 3072)
+ real_ref_img = torch.zeros_like(img[:,:ref_length].clone())
+
+ audio_feature_pad = audio_feature_all[:,:1].repeat(1,3,1,1)
+ audio_feature_all_insert = torch.cat([audio_feature_pad, audio_feature_all], dim=1).view(bsz, ot, 16, 3072)
+
+ double_idx = self.double_stream_map[str(layer_num)]
+ real_img = self.audio_adapter_blocks[double_idx](audio_feature_all_insert, real_img).view(bsz, -1, 3072)
+ img = img + torch.cat((real_ref_img, real_img * face_mask), dim=1)
+ if get_sequence_parallel_state():
+ sp_size = nccl_info.sp_size
+ sp_rank = nccl_info.rank_within_group
+ assert img.shape[1] % sp_size == 0, f"Cannot split video sequence into ulysses SP ({sp_size}) parts evenly"
+ img = torch.chunk(img, sp_size, dim=1)[sp_rank]
+
+ # Merge txt and img to pass through single stream blocks.
+ x = torch.cat((img, txt), 1)
+ # Compatible with MMDiT.
+ if len(self.single_blocks) > 0:
+ for layer_num, block in enumerate(self.single_blocks):
+ if layer_num == (len(self.single_blocks) - 1):
+ # self.cache_out = x
+ tmp = x[:, :-txt_seq_len, ...]
+ if get_sequence_parallel_state():
+ tmp = all_gather(tmp, dim=1)
+ self.cache_out = torch.cat([tmp, x[:, -txt_seq_len:, ...]], dim=1)
+
+ single_block_args = [x, vec, txt_seq_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, (freqs_cos, freqs_sin)]
+ x = block(*single_block_args)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+ else:
+ if get_sequence_parallel_state():
+ sp_size = nccl_info.sp_size
+ sp_rank = nccl_info.rank_within_group
+ tmp, txt = self.cache_out[:, :-txt_seq_len], self.cache_out[:, -txt_seq_len:]
+ tmp = torch.chunk(tmp, sp_size, dim=1)[sp_rank]
+ x = torch.cat([tmp, txt], dim=1)
+ else:
+ x = self.cache_out
+ if len(self.single_blocks) > 0:
+ for layer_num, block in enumerate(self.single_blocks):
+ if layer_num < (len(self.single_blocks) - 1):
+ continue
+ single_block_args = [x, vec, txt_seq_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, (freqs_cos, freqs_sin)]
+ x = block(*single_block_args)
+ if CPU_OFFLOAD: torch.cuda.empty_cache()
+
+ img = x[:, :-txt_seq_len, ...]
+
+ if get_sequence_parallel_state():
+ img = all_gather(img, dim=1)
+ img = img[:, ref_length:]
+ # ---------------------------- Final layer ------------------------------
+ img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
+ img = self.unpatchify(img, tt, th, tw)
+
+ if return_dict:
+ out['x'] = img
+ return out
+ return img
+
+ def unpatchify(self, x, t, h, w):
+ """
+ x: (N, T, patch_size**2 * C)
+ imgs: (N, H, W, C)
+ """
+ c = self.unpatchify_channels
+ pt, ph, pw = self.patch_size
+ assert t * h * w == x.shape[1]
+
+ x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
+ x = torch.einsum('nthwcopq->nctohpwq', x)
+ imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
+
+ return imgs
+
+ def params_count(self):
+ counts = {
+ "double": sum([
+ sum(p.numel() for p in block.img_attn_qkv.parameters()) +
+ sum(p.numel() for p in block.img_attn_proj.parameters()) +
+ sum(p.numel() for p in block.img_mlp.parameters()) +
+ sum(p.numel() for p in block.txt_attn_qkv.parameters()) +
+ sum(p.numel() for p in block.txt_attn_proj.parameters()) +
+ sum(p.numel() for p in block.txt_mlp.parameters())
+ for block in self.double_blocks
+ ]),
+ "single": sum([
+ sum(p.numel() for p in block.linear1.parameters()) +
+ sum(p.numel() for p in block.linear2.parameters())
+ for block in self.single_blocks
+ ]),
+ "total": sum(p.numel() for p in self.parameters()),
+ }
+ counts["attn+mlp"] = counts["double"] + counts["single"]
+ return counts
+
+#################################################################################
+# HunyuanVideo Configs #
+#################################################################################
+
+HUNYUAN_VIDEO_CONFIG = { # Attn+MLP / Total
+ 'HYVideo-T/2': { # 9.0B / 12.5B
+ 'depth_double_blocks': 20,
+ 'depth_single_blocks': 40,
+ 'rope_dim_list': [16, 56, 56],
+ 'hidden_size': 3072,
+ 'num_heads': 24,
+ 'mlp_width_ratio': 4,
+ },
+}
diff --git a/hymm_sp/modules/modulate_layers.py b/hymm_sp/modules/modulate_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..65f8c0d9391c84b81e378972539f2ef38fbcabe0
--- /dev/null
+++ b/hymm_sp/modules/modulate_layers.py
@@ -0,0 +1,76 @@
+from typing import Callable
+
+import torch
+import torch.nn as nn
+
+
+class ModulateDiT(nn.Module):
+ """Modulation layer for DiT."""
+ def __init__(
+ self,
+ hidden_size: int,
+ factor: int,
+ act_layer: Callable,
+ dtype=None,
+ device=None,
+ ):
+ factory_kwargs = {"dtype": dtype, "device": device}
+ super().__init__()
+ self.act = act_layer()
+ self.linear = nn.Linear(
+ hidden_size, factor * hidden_size, bias=True, **factory_kwargs
+ )
+ # Zero-initialize the modulation
+ nn.init.zeros_(self.linear.weight)
+ nn.init.zeros_(self.linear.bias)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.linear(self.act(x))
+
+
+def modulate(x, shift=None, scale=None):
+ """modulate by shift and scale
+
+ Args:
+ x (torch.Tensor): input tensor.
+ shift (torch.Tensor, optional): shift tensor. Defaults to None.
+ scale (torch.Tensor, optional): scale tensor. Defaults to None.
+
+ Returns:
+ torch.Tensor: the output tensor after modulate.
+ """
+ if scale is None and shift is None:
+ return x
+ elif shift is None:
+ return x * (1 + scale.unsqueeze(1))
+ elif scale is None:
+ return x + shift.unsqueeze(1)
+ else:
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
+
+
+def apply_gate(x, gate=None, tanh=False):
+ """AI is creating summary for apply_gate
+
+ Args:
+ x (torch.Tensor): input tensor.
+ gate (torch.Tensor, optional): gate tensor. Defaults to None.
+ tanh (bool, optional): whether to use tanh function. Defaults to False.
+
+ Returns:
+ torch.Tensor: the output tensor after apply gate.
+ """
+ if gate is None:
+ return x
+ if tanh:
+ return x * gate.unsqueeze(1).tanh()
+ else:
+ return x * gate.unsqueeze(1)
+
+
+def ckpt_wrapper(module):
+ def ckpt_forward(*inputs):
+ outputs = module(*inputs)
+ return outputs
+
+ return ckpt_forward
\ No newline at end of file
diff --git a/hymm_sp/modules/norm_layers.py b/hymm_sp/modules/norm_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..6e12e69963cedfc2e238f52def1da0d9e896148c
--- /dev/null
+++ b/hymm_sp/modules/norm_layers.py
@@ -0,0 +1,77 @@
+import torch
+import torch.nn as nn
+
+
+class RMSNorm(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ elementwise_affine=True,
+ eps: float = 1e-6,
+ device=None,
+ dtype=None,
+ ):
+ """
+ Initialize the RMSNorm normalization layer.
+
+ Args:
+ dim (int): The dimension of the input tensor.
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
+
+ Attributes:
+ eps (float): A small value added to the denominator for numerical stability.
+ weight (nn.Parameter): Learnable scaling parameter.
+
+ """
+ factory_kwargs = {"device": device, "dtype": dtype}
+ super().__init__()
+ self.eps = eps
+ if elementwise_affine:
+ self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))
+
+ def _norm(self, x):
+ """
+ Apply the RMSNorm normalization to the input tensor.
+
+ Args:
+ x (torch.Tensor): The input tensor.
+
+ Returns:
+ torch.Tensor: The normalized tensor.
+
+ """
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
+
+ def forward(self, x):
+ """
+ Forward pass through the RMSNorm layer.
+
+ Args:
+ x (torch.Tensor): The input tensor.
+
+ Returns:
+ torch.Tensor: The output tensor after applying RMSNorm.
+
+ """
+ output = self._norm(x.float()).type_as(x)
+ if hasattr(self, "weight"):
+ output = output * self.weight
+ return output
+
+
+def get_norm_layer(norm_layer):
+ """
+ Get the normalization layer.
+
+ Args:
+ norm_layer (str): The type of normalization layer.
+
+ Returns:
+ norm_layer (nn.Module): The normalization layer.
+ """
+ if norm_layer == "layer":
+ return nn.LayerNorm
+ elif norm_layer == "rms":
+ return RMSNorm
+ else:
+ raise NotImplementedError(f"Norm layer {norm_layer} is not implemented")
\ No newline at end of file
diff --git a/hymm_sp/modules/parallel_states.py b/hymm_sp/modules/parallel_states.py
new file mode 100644
index 0000000000000000000000000000000000000000..795badafc6bd5c88f4928f7ceacda8f2a870054e
--- /dev/null
+++ b/hymm_sp/modules/parallel_states.py
@@ -0,0 +1,366 @@
+import os
+import torch
+import datetime
+import torch.distributed as dist
+from typing import Any, Tuple
+from torch import Tensor
+from flash_attn.flash_attn_interface import flash_attn_varlen_func
+
+
+class COMM_INFO:
+ def __init__(self):
+ self.group = None
+ self.sp_size = 1
+ self.global_rank = 0
+ self.rank_within_group = 0
+ self.group_id = 0
+
+
+nccl_info = COMM_INFO()
+_SEQUENCE_PARALLEL_STATE = False
+
+
+def get_cu_seqlens(text_mask, img_len):
+ """Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len
+
+ Args:
+ text_mask (torch.Tensor): the mask of text
+ img_len (int): the length of image
+
+ Returns:
+ torch.Tensor: the calculated cu_seqlens for flash attention
+ """
+ batch_size = text_mask.shape[0]
+ text_len = text_mask.sum(dim=1)
+ max_len = text_mask.shape[1] + img_len
+
+ cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
+
+ for i in range(batch_size):
+ s = text_len[i] + img_len
+ s1 = i * max_len + s
+ s2 = (i + 1) * max_len
+ cu_seqlens[2 * i + 1] = s1
+ cu_seqlens[2 * i + 2] = s2
+
+ return cu_seqlens
+
+def initialize_sequence_parallel_state(sequence_parallel_size):
+ global _SEQUENCE_PARALLEL_STATE
+ if sequence_parallel_size > 1:
+ _SEQUENCE_PARALLEL_STATE = True
+ initialize_sequence_parallel_group(sequence_parallel_size)
+ else:
+ nccl_info.sp_size = 1
+ nccl_info.global_rank = int(os.getenv("RANK", "0"))
+ nccl_info.rank_within_group = 0
+ nccl_info.group_id = int(os.getenv("RANK", "0"))
+
+def get_sequence_parallel_state():
+ return _SEQUENCE_PARALLEL_STATE
+
+def initialize_sequence_parallel_group(sequence_parallel_size):
+ """Initialize the sequence parallel group."""
+ rank = int(os.getenv("RANK", "0"))
+ world_size = int(os.getenv("WORLD_SIZE", "1"))
+ assert (
+ world_size % sequence_parallel_size == 0
+ ), "world_size must be divisible by sequence_parallel_size, but got world_size: {}, sequence_parallel_size: {}".format(
+ world_size, sequence_parallel_size)
+ nccl_info.sp_size = sequence_parallel_size
+ nccl_info.global_rank = rank
+ num_sequence_parallel_groups: int = world_size // sequence_parallel_size
+ for i in range(num_sequence_parallel_groups):
+ ranks = range(i * sequence_parallel_size, (i + 1) * sequence_parallel_size)
+ group = dist.new_group(ranks)
+ if rank in ranks:
+ nccl_info.group = group
+ nccl_info.rank_within_group = rank - i * sequence_parallel_size
+ nccl_info.group_id = i
+
+def initialize_distributed(seed):
+ local_rank = int(os.getenv("RANK", 0))
+ world_size = int(os.getenv("WORLD_SIZE", 1))
+ torch.cuda.set_device(local_rank)
+ dist.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=2**31-1), world_size=world_size, rank=local_rank)
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed)
+ initialize_sequence_parallel_state(world_size)
+
+def _all_to_all_4D(input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None) -> torch.tensor:
+ """
+ all-to-all for QKV
+
+ Args:
+ input (torch.tensor): a tensor sharded along dim scatter dim
+ scatter_idx (int): default 1
+ gather_idx (int): default 2
+ group : torch process group
+
+ Returns:
+ torch.tensor: resharded tensor (bs, seqlen/P, hc, hs)
+ """
+ assert (input.dim() == 4), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}"
+
+ seq_world_size = dist.get_world_size(group)
+ if scatter_idx == 2 and gather_idx == 1:
+ # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs)
+ bs, shard_seqlen, hc, hs = input.shape
+ seqlen = shard_seqlen * seq_world_size
+ shard_hc = hc // seq_world_size
+
+ # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
+ # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs)
+ input_t = (input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs).transpose(0, 2).contiguous())
+
+ output = torch.empty_like(input_t)
+ # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
+ # (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head
+ if seq_world_size > 1:
+ dist.all_to_all_single(output, input_t, group=group)
+ torch.cuda.synchronize()
+ else:
+ output = input_t
+ # if scattering the seq-dim, transpose the heads back to the original dimension
+ output = output.reshape(seqlen, bs, shard_hc, hs)
+
+ # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs)
+ output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs)
+
+ return output
+
+ elif scatter_idx == 1 and gather_idx == 2:
+ # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
+ bs, seqlen, shard_hc, hs = input.shape
+ hc = shard_hc * seq_world_size
+ shard_seqlen = seqlen // seq_world_size
+ seq_world_size = dist.get_world_size(group)
+
+ # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
+ # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs)
+ input_t = (input.reshape(bs, seq_world_size, shard_seqlen, shard_hc,
+ hs).transpose(0,
+ 3).transpose(0,
+ 1).contiguous().reshape(seq_world_size, shard_hc,
+ shard_seqlen, bs, hs))
+
+ output = torch.empty_like(input_t)
+ # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
+ # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
+ if seq_world_size > 1:
+ dist.all_to_all_single(output, input_t, group=group)
+ torch.cuda.synchronize()
+ else:
+ output = input_t
+
+ # if scattering the seq-dim, transpose the heads back to the original dimension
+ output = output.reshape(hc, shard_seqlen, bs, hs)
+
+ # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
+ output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs)
+
+ return output
+ else:
+ raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2")
+
+
+class SeqAllToAll4D(torch.autograd.Function):
+ @staticmethod
+ def forward(
+ ctx: Any,
+ group: dist.ProcessGroup,
+ input: Tensor,
+ scatter_idx: int,
+ gather_idx: int,
+ ) -> Tensor:
+ ctx.group = group
+ ctx.scatter_idx = scatter_idx
+ ctx.gather_idx = gather_idx
+
+ return _all_to_all_4D(input, scatter_idx, gather_idx, group=group)
+
+ @staticmethod
+ def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
+ return (
+ None,
+ SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx),
+ None,
+ None,
+ )
+
+
+def all_to_all_4D(
+ input_: torch.Tensor,
+ scatter_dim: int = 2,
+ gather_dim: int = 1,
+):
+ return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim)
+
+
+def _all_to_all(
+ input_: torch.Tensor,
+ world_size: int,
+ group: dist.ProcessGroup,
+ scatter_dim: int,
+ gather_dim: int,
+):
+ input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
+ output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
+ dist.all_to_all(output_list, input_list, group=group)
+ return torch.cat(output_list, dim=gather_dim).contiguous()
+
+
+class _AllToAll(torch.autograd.Function):
+ """All-to-all communication.
+
+ Args:
+ input_: input matrix
+ process_group: communication group
+ scatter_dim: scatter dimension
+ gather_dim: gather dimension
+ """
+
+ @staticmethod
+ def forward(ctx, input_, process_group, scatter_dim, gather_dim):
+ ctx.process_group = process_group
+ ctx.scatter_dim = scatter_dim
+ ctx.gather_dim = gather_dim
+ ctx.world_size = dist.get_world_size(process_group)
+ output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim)
+ return output
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ grad_output = _all_to_all(
+ grad_output,
+ ctx.world_size,
+ ctx.process_group,
+ ctx.gather_dim,
+ ctx.scatter_dim,
+ )
+ return (
+ grad_output,
+ None,
+ None,
+ None,
+ )
+
+def all_to_all(
+ input_: torch.Tensor,
+ scatter_dim: int = 2,
+ gather_dim: int = 1,
+):
+ return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim)
+
+
+class _AllGather(torch.autograd.Function):
+ """All-gather communication with autograd support.
+
+ Args:
+ input_: input tensor
+ dim: dimension along which to concatenate
+ """
+
+ @staticmethod
+ def forward(ctx, input_, dim):
+ ctx.dim = dim
+ world_size = nccl_info.sp_size
+ group = nccl_info.group
+ input_size = list(input_.size())
+
+ ctx.input_size = input_size[dim]
+
+ tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
+ input_ = input_.contiguous()
+ dist.all_gather(tensor_list, input_, group=group)
+
+ output = torch.cat(tensor_list, dim=dim)
+ return output
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ world_size = nccl_info.sp_size
+ rank = nccl_info.rank_within_group
+ dim = ctx.dim
+ input_size = ctx.input_size
+
+ sizes = [input_size] * world_size
+
+ grad_input_list = torch.split(grad_output, sizes, dim=dim)
+ grad_input = grad_input_list[rank]
+
+ return grad_input, None
+
+
+def all_gather(input_: torch.Tensor, dim: int = 1):
+ """Performs an all-gather operation on the input tensor along the specified dimension.
+
+ Args:
+ input_ (torch.Tensor): Input tensor of shape [B, H, S, D].
+ dim (int, optional): Dimension along which to concatenate. Defaults to 1.
+
+ Returns:
+ torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'.
+ """
+ return _AllGather.apply(input_, dim)
+
+def parallel_attention(q, k, v, img_q_len, img_kv_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv,):
+ """
+ img_q_len,img_kv_len: 32256
+ text_mask: 2x256
+ query: [2, 32256, 24, 128])
+ encoder_query: [2, 256, 24, 128]
+ """
+ query, encoder_query = q
+ key, encoder_key = k
+ value, encoder_value = v
+ rank = torch.distributed.get_rank()
+ if get_sequence_parallel_state():
+ query = all_to_all_4D(query, scatter_dim=2, gather_dim=1) # [2, 32256, 24, 128]
+ key = all_to_all_4D(key, scatter_dim=2, gather_dim=1)
+ value = all_to_all_4D(value, scatter_dim=2, gather_dim=1)
+ def shrink_head(encoder_state, dim):
+ local_heads = encoder_state.shape[dim] // nccl_info.sp_size
+ return encoder_state.narrow(dim, nccl_info.rank_within_group * local_heads, local_heads)
+ encoder_query = shrink_head(encoder_query, dim=2)
+ encoder_key = shrink_head(encoder_key, dim=2)
+ encoder_value = shrink_head(encoder_value, dim=2)
+
+ sequence_length = query.size(1) # 32256
+ encoder_sequence_length = encoder_query.size(1) # 256
+
+ query = torch.cat([query, encoder_query], dim=1)
+ key = torch.cat([key, encoder_key], dim=1)
+ value = torch.cat([value, encoder_value], dim=1)
+ bsz = query.shape[0]
+ head = query.shape[-2]
+ head_dim = query.shape[-1]
+ query, key, value = [
+ x.view(x.shape[0] * x.shape[1], *x.shape[2:])
+ for x in [query, key, value]
+ ]
+ hidden_states = flash_attn_varlen_func(
+ query,
+ key,
+ value,
+ cu_seqlens_q,
+ cu_seqlens_kv,
+ max_seqlen_q,
+ max_seqlen_kv,
+ )
+ # B, S, 3, H, D
+ hidden_states = hidden_states.view(bsz, max_seqlen_q, head, head_dim).contiguous()
+
+ hidden_states, encoder_hidden_states = hidden_states.split_with_sizes((sequence_length, encoder_sequence_length),
+ dim=1)
+ if get_sequence_parallel_state():
+ hidden_states = all_to_all_4D(hidden_states, scatter_dim=1, gather_dim=2)
+ encoder_hidden_states = all_gather(encoder_hidden_states, dim=2).contiguous()
+ hidden_states = hidden_states.to(query.dtype)
+ encoder_hidden_states = encoder_hidden_states.to(query.dtype)
+
+ attn = torch.cat([hidden_states, encoder_hidden_states], dim=1)
+
+ b, s, _, _= attn.shape
+ attn = attn.reshape(b, s, -1)
+ return attn, None
\ No newline at end of file
diff --git a/hymm_sp/modules/posemb_layers.py b/hymm_sp/modules/posemb_layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..7768cf6482a4b6f40f4e393d32cd9e08522b4e57
--- /dev/null
+++ b/hymm_sp/modules/posemb_layers.py
@@ -0,0 +1,164 @@
+import torch
+from typing import Union, Tuple, List
+
+
+def _to_tuple(x, dim=2):
+ if isinstance(x, int):
+ return (x,) * dim
+ elif len(x) == dim:
+ return x
+ else:
+ raise ValueError(f"Expected length {dim} or int, but got {x}")
+
+
+def get_meshgrid_nd(start, *args, dim=2):
+ """
+ Get n-D meshgrid with start, stop and num.
+
+ Args:
+ start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,
+ step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num
+ should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in
+ n-tuples.
+ *args: See above.
+ dim (int): Dimension of the meshgrid. Defaults to 2.
+
+ Returns:
+ grid (np.ndarray): [dim, ...]
+ """
+ if len(args) == 0:
+ # start is grid_size
+ num = _to_tuple(start, dim=dim)
+ start = (0,) * dim
+ stop = num
+ elif len(args) == 1:
+ # start is start, args[0] is stop, step is 1
+ start = _to_tuple(start, dim=dim)
+ stop = _to_tuple(args[0], dim=dim)
+ num = [stop[i] - start[i] for i in range(dim)]
+ elif len(args) == 2:
+ # start is start, args[0] is stop, args[1] is num
+ start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0
+ stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32
+ num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124
+ else:
+ raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
+
+ # PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
+ axis_grid = []
+ for i in range(dim):
+ a, b, n = start[i], stop[i], num[i]
+ g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
+ axis_grid.append(g)
+ grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D]
+ grid = torch.stack(grid, dim=0) # [dim, W, H, D]
+
+ return grid
+
+
+#################################################################################
+# Rotary Positional Embedding Functions #
+#################################################################################
+# https://github.com/meta-llama/llama/blob/be327c427cc5e89cc1d3ab3d3fec4484df771245/llama/model.py#L80
+
+def get_nd_rotary_pos_embed(rope_dim_list, start, *args, theta=10000., use_real=False,
+ theta_rescale_factor: Union[float, List[float]]=1.0,
+ interpolation_factor: Union[float, List[float]]=1.0):
+ """
+ This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.
+
+ Args:
+ rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.
+ sum(rope_dim_list) should equal to head_dim of attention layer.
+ start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,
+ args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.
+ *args: See above.
+ theta (float): Scaling factor for frequency computation. Defaults to 10000.0.
+ use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.
+ Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real
+ part and an imaginary part separately.
+ theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.
+
+ Returns:
+ pos_embed (torch.Tensor): [HW, D/2]
+ """
+
+ grid = get_meshgrid_nd(start, *args, dim=len(rope_dim_list)) # [3, W, H, D] / [2, W, H]
+
+ if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
+ theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
+ elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
+ theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
+ assert len(theta_rescale_factor) == len(rope_dim_list), "len(theta_rescale_factor) should equal to len(rope_dim_list)"
+
+ if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
+ interpolation_factor = [interpolation_factor] * len(rope_dim_list)
+ elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
+ interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
+ assert len(interpolation_factor) == len(rope_dim_list), "len(interpolation_factor) should equal to len(rope_dim_list)"
+
+ # use 1/ndim of dimensions to encode grid_axis
+ embs = []
+ for i in range(len(rope_dim_list)):
+ emb = get_1d_rotary_pos_embed(rope_dim_list[i], grid[i].reshape(-1), theta, use_real=use_real,
+ theta_rescale_factor=theta_rescale_factor[i],
+ interpolation_factor=interpolation_factor[i]) # 2 x [WHD, rope_dim_list[i]]
+ embs.append(emb)
+
+ if use_real:
+ cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2)
+ sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2)
+ return cos, sin
+ else:
+ emb = torch.cat(embs, dim=1) # (WHD, D/2)
+ return emb
+
+
+def get_1d_rotary_pos_embed(dim: int,
+ pos: Union[torch.FloatTensor, int],
+ theta: float = 10000.0,
+ use_real: bool = False,
+ theta_rescale_factor: float = 1.0,
+ interpolation_factor: float = 1.0,
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
+ """
+ Precompute the frequency tensor for complex exponential (cis) with given dimensions.
+ (Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)
+
+ This function calculates a frequency tensor with complex exponential using the given dimension 'dim'
+ and the end index 'end'. The 'theta' parameter scales the frequencies.
+ The returned tensor contains complex values in complex64 data type.
+
+ Args:
+ dim (int): Dimension of the frequency tensor.
+ pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar
+ theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
+ use_real (bool, optional): If True, return real part and imaginary part separately.
+ Otherwise, return complex numbers.
+ theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.
+
+ Returns:
+ freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]
+ freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]
+ """
+ if isinstance(pos, int):
+ pos = torch.arange(pos).float()
+
+ # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
+ # has some connection to NTK literature
+ if theta_rescale_factor != 1.0:
+ theta *= theta_rescale_factor ** (dim / (dim - 2))
+
+ freqs = 1.0 / (
+ theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
+ ) # [D/2]
+ freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2]
+ if use_real:
+ freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
+ freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
+ return freqs_cos, freqs_sin
+ else:
+ freqs_cis = torch.polar(
+ torch.ones_like(freqs), freqs
+ ) # complex64 # [S, D/2]
+ return freqs_cis
diff --git a/hymm_sp/modules/token_refiner.py b/hymm_sp/modules/token_refiner.py
new file mode 100644
index 0000000000000000000000000000000000000000..aba2badf989c6f9dc9368917e57ccadb8b16664a
--- /dev/null
+++ b/hymm_sp/modules/token_refiner.py
@@ -0,0 +1,213 @@
+from typing import Optional
+
+from einops import rearrange
+import torch
+import torch.nn as nn
+
+from .activation_layers import get_activation_layer
+from .attn_layers import attention
+from .norm_layers import get_norm_layer
+from .embed_layers import TimestepEmbedder, TextProjection
+from .attn_layers import attention
+from .mlp_layers import MLP
+from .modulate_layers import apply_gate
+
+
+class IndividualTokenRefinerBlock(nn.Module):
+ def __init__(
+ self,
+ hidden_size,
+ num_heads,
+ mlp_ratio: str = 4.0,
+ mlp_drop_rate: float = 0.0,
+ act_type: str = "silu",
+ qk_norm: bool = False,
+ qk_norm_type: str = "layer",
+ qkv_bias: bool = True,
+ dtype: Optional[torch.dtype] = None,
+ device: Optional[torch.device] = None,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+ self.num_heads = num_heads
+ head_dim = hidden_size // num_heads
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
+
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ self.self_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
+ qk_norm_layer = get_norm_layer(qk_norm_type)
+ self.self_attn_q_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.self_attn_k_norm = (
+ qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ if qk_norm
+ else nn.Identity()
+ )
+ self.self_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
+
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
+ act_layer = get_activation_layer(act_type)
+ self.mlp = MLP(
+ in_channels=hidden_size,
+ hidden_channels=mlp_hidden_dim,
+ act_layer=act_layer,
+ drop=mlp_drop_rate,
+ **factory_kwargs,
+ )
+
+ self.adaLN_modulation = nn.Sequential(
+ act_layer(),
+ nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs)
+ )
+ # Zero-initialize the modulation
+ nn.init.zeros_(self.adaLN_modulation[1].weight)
+ nn.init.zeros_(self.adaLN_modulation[1].bias)
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ c: torch.Tensor, # timestep_aware_representations + context_aware_representations
+ attn_mask: torch.Tensor = None,
+ ):
+ gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
+
+ norm_x = self.norm1(x)
+ qkv = self.self_attn_qkv(norm_x)
+ q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
+ # Apply QK-Norm if needed
+ q = self.self_attn_q_norm(q).to(v)
+ k = self.self_attn_k_norm(k).to(v)
+
+ # Self-Attention
+ attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)
+
+ x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
+
+ # FFN Layer
+ x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
+
+ return x
+
+
+class IndividualTokenRefiner(nn.Module):
+ def __init__(
+ self,
+ hidden_size,
+ num_heads,
+ depth,
+ mlp_ratio: float = 4.0,
+ mlp_drop_rate: float = 0.0,
+ act_type: str = "silu",
+ qk_norm: bool = False,
+ qk_norm_type: str = "layer",
+ qkv_bias: bool = True,
+ dtype: Optional[torch.dtype] = None,
+ device: Optional[torch.device] = None,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+ self.blocks = nn.ModuleList([
+ IndividualTokenRefinerBlock(
+ hidden_size=hidden_size,
+ num_heads=num_heads,
+ mlp_ratio=mlp_ratio,
+ mlp_drop_rate=mlp_drop_rate,
+ act_type=act_type,
+ qk_norm=qk_norm,
+ qk_norm_type=qk_norm_type,
+ qkv_bias=qkv_bias,
+ **factory_kwargs,
+ ) for _ in range(depth)
+ ])
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ c: torch.LongTensor,
+ mask: Optional[torch.Tensor] = None,
+ ):
+ self_attn_mask = None
+ if mask is not None:
+ batch_size = mask.shape[0]
+ seq_len = mask.shape[1]
+ mask = mask.to(x.device)
+ # batch_size x 1 x seq_len x seq_len
+ self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
+ # batch_size x 1 x seq_len x seq_len
+ self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
+ # batch_size x 1 x seq_len x seq_len, 1 for broadcasting of num_heads
+ self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
+ # avoids self-attention weight being NaN for padding tokens
+ self_attn_mask[:, :, :, 0] = True
+
+ for block in self.blocks:
+ x = block(x, c, self_attn_mask)
+ return x
+
+
+class SingleTokenRefiner(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ hidden_size,
+ num_heads,
+ depth,
+ mlp_ratio: float = 4.0,
+ mlp_drop_rate: float = 0.0,
+ act_type: str = "silu",
+ qk_norm: bool = False,
+ qk_norm_type: str = "layer",
+ qkv_bias: bool = True,
+ dtype: Optional[torch.dtype] = None,
+ device: Optional[torch.device] = None,
+ ):
+ factory_kwargs = {'device': device, 'dtype': dtype}
+ super().__init__()
+
+ self.input_embedder = nn.Linear(in_channels, hidden_size, bias=True, **factory_kwargs)
+
+ act_layer = get_activation_layer(act_type)
+ # Build timestep embedding layer
+ self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
+ # Build context embedding layer
+ self.c_embedder = TextProjection(in_channels, hidden_size, act_layer, **factory_kwargs)
+
+ self.individual_token_refiner = IndividualTokenRefiner(
+ hidden_size=hidden_size,
+ num_heads=num_heads,
+ depth=depth,
+ mlp_ratio=mlp_ratio,
+ mlp_drop_rate=mlp_drop_rate,
+ act_type=act_type,
+ qk_norm=qk_norm,
+ qk_norm_type=qk_norm_type,
+ qkv_bias=qkv_bias,
+ **factory_kwargs
+ )
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ t: torch.LongTensor,
+ mask: Optional[torch.LongTensor] = None,
+ ):
+ timestep_aware_representations = self.t_embedder(t)
+
+ if mask is None:
+ context_aware_representations = x.mean(dim=1)
+ else:
+ mask_float = mask.float().unsqueeze(-1) # [b, s1, 1]
+ context_aware_representations = (
+ (x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
+ )
+ context_aware_representations = self.c_embedder(context_aware_representations)
+ c = timestep_aware_representations + context_aware_representations
+
+ x = self.input_embedder(x)
+
+ x = self.individual_token_refiner(x, c, mask)
+
+ return x
\ No newline at end of file
diff --git a/hymm_sp/sample_batch.py b/hymm_sp/sample_batch.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa263f57f4e7ad6bd5688cca3770fd83021a4b62
--- /dev/null
+++ b/hymm_sp/sample_batch.py
@@ -0,0 +1,114 @@
+import os
+import torch
+import numpy as np
+from pathlib import Path
+from loguru import logger
+from einops import rearrange
+import torch.distributed
+from torch.utils.data.distributed import DistributedSampler
+from torch.utils.data import DataLoader
+from hymm_sp.config import parse_args
+from hymm_sp.sample_inference_audio import HunyuanVideoSampler
+from hymm_sp.data_kits.audio_dataset import VideoAudioTextLoaderVal
+from hymm_sp.data_kits.data_tools import save_videos_grid
+from hymm_sp.data_kits.face_align import AlignImage
+from hymm_sp.modules.parallel_states import (
+ initialize_distributed,
+ nccl_info,
+)
+
+from transformers import WhisperModel
+from transformers import AutoFeatureExtractor
+
+MODEL_OUTPUT_PATH = os.environ.get('MODEL_BASE')
+
+
+def main():
+ args = parse_args()
+ models_root_path = Path(args.ckpt)
+ print("*"*20)
+ initialize_distributed(args.seed)
+ if not models_root_path.exists():
+ raise ValueError(f"`models_root` not exists: {models_root_path}")
+ print("+"*20)
+ # Create save folder to save the samples
+ save_path = args.save_path
+ if not os.path.exists(args.save_path):
+ os.makedirs(save_path, exist_ok=True)
+
+ # Load models
+ rank = 0
+ vae_dtype = torch.float16
+ device = torch.device("cuda")
+ if nccl_info.sp_size > 1:
+ device = torch.device(f"cuda:{torch.distributed.get_rank()}")
+ rank = torch.distributed.get_rank()
+
+ hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(args.ckpt, args=args, device=device)
+ # Get the updated args
+ args = hunyuan_video_sampler.args
+
+ wav2vec = WhisperModel.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/").to(device=device, dtype=torch.float32)
+ wav2vec.requires_grad_(False)
+
+ BASE_DIR = f'{MODEL_OUTPUT_PATH}/ckpts/det_align/'
+ det_path = os.path.join(BASE_DIR, 'detface.pt')
+ align_instance = AlignImage("cuda", det_path=det_path)
+
+ feature_extractor = AutoFeatureExtractor.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/")
+
+ kwargs = {
+ "text_encoder": hunyuan_video_sampler.text_encoder,
+ "text_encoder_2": hunyuan_video_sampler.text_encoder_2,
+ "feature_extractor": feature_extractor,
+ }
+ video_dataset = VideoAudioTextLoaderVal(
+ image_size=args.image_size,
+ meta_file=args.input,
+ **kwargs,
+ )
+
+ sampler = DistributedSampler(video_dataset, num_replicas=1, rank=0, shuffle=False, drop_last=False)
+ json_loader = DataLoader(video_dataset, batch_size=1, shuffle=False, sampler=sampler, drop_last=False)
+
+ for batch_index, batch in enumerate(json_loader, start=1):
+
+ fps = batch["fps"]
+ videoid = batch['videoid'][0]
+ audio_path = str(batch["audio_path"][0])
+ save_path = args.save_path
+ output_path = f"{save_path}/{videoid}.mp4"
+ output_audio_path = f"{save_path}/{videoid}_audio.mp4"
+
+ samples = hunyuan_video_sampler.predict(args, batch, wav2vec, feature_extractor, align_instance)
+
+ sample = samples['samples'][0].unsqueeze(0) # denoised latent, (bs, 16, t//4, h//8, w//8)
+ sample = sample[:, :, :batch["audio_len"][0]]
+
+ video = rearrange(sample[0], "c f h w -> f h w c")
+ video = (video * 255.).data.cpu().numpy().astype(np.uint8) # (f h w c)
+
+ torch.cuda.empty_cache()
+
+ final_frames = []
+ for frame in video:
+ final_frames.append(frame)
+ final_frames = np.stack(final_frames, axis=0)
+
+ if rank == 0:
+ from hymm_sp.data_kits.ffmpeg_utils import save_video
+ save_video(final_frames, output_path, n_rows=len(final_frames), fps=fps.item())
+ os.system(f"ffmpeg -i '{output_path}' -i '{audio_path}' -shortest '{output_audio_path}' -y -loglevel quiet; rm '{output_path}'")
+
+
+
+
+if __name__ == "__main__":
+ main()
+
+
+
+
+
+
+
diff --git a/hymm_sp/sample_gpu_poor.py b/hymm_sp/sample_gpu_poor.py
new file mode 100644
index 0000000000000000000000000000000000000000..cdfb719f18b250e11d2217b905bbb9444d3e4073
--- /dev/null
+++ b/hymm_sp/sample_gpu_poor.py
@@ -0,0 +1,115 @@
+import os
+import numpy as np
+from pathlib import Path
+from loguru import logger
+import torch
+from einops import rearrange
+import torch.distributed
+from torch.utils.data.distributed import DistributedSampler
+from torch.utils.data import DataLoader
+from hymm_sp.config import parse_args
+from hymm_sp.sample_inference_audio import HunyuanVideoSampler
+from hymm_sp.data_kits.audio_dataset import VideoAudioTextLoaderVal
+from hymm_sp.data_kits.face_align import AlignImage
+
+from transformers import WhisperModel
+from transformers import AutoFeatureExtractor
+
+MODEL_OUTPUT_PATH = os.environ.get('MODEL_BASE')
+
+
+def main():
+ args = parse_args()
+ models_root_path = Path(args.ckpt)
+
+ if not models_root_path.exists():
+ raise ValueError(f"`models_root` not exists: {models_root_path}")
+
+ # Create save folder to save the samples
+ save_path = args.save_path if args.save_path_suffix=="" else f'{args.save_path}_{args.save_path_suffix}'
+ if not os.path.exists(args.save_path):
+ os.makedirs(save_path, exist_ok=True)
+
+ # Load models
+ rank = 0
+ vae_dtype = torch.float16
+ device = torch.device("cuda")
+
+ hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(args.ckpt, args=args, device=device)
+ # Get the updated args
+ args = hunyuan_video_sampler.args
+ if args.cpu_offload:
+ from diffusers.hooks import apply_group_offloading
+ onload_device = torch.device("cuda")
+ apply_group_offloading(hunyuan_video_sampler.pipeline.transformer, onload_device=onload_device, offload_type="block_level", num_blocks_per_group=1)
+
+ wav2vec = WhisperModel.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/").to(device=device, dtype=torch.float32)
+ wav2vec.requires_grad_(False)
+
+ BASE_DIR = f'{MODEL_OUTPUT_PATH}/ckpts/det_align/'
+ det_path = os.path.join(BASE_DIR, 'detface.pt')
+ align_instance = AlignImage("cuda", det_path=det_path)
+
+ feature_extractor = AutoFeatureExtractor.from_pretrained(f"{MODEL_OUTPUT_PATH}/ckpts/whisper-tiny/")
+
+ kwargs = {
+ "text_encoder": hunyuan_video_sampler.text_encoder,
+ "text_encoder_2": hunyuan_video_sampler.text_encoder_2,
+ "feature_extractor": feature_extractor,
+ }
+ video_dataset = VideoAudioTextLoaderVal(
+ image_size=args.image_size,
+ meta_file=args.input,
+ **kwargs,
+ )
+
+ sampler = DistributedSampler(video_dataset, num_replicas=1, rank=0, shuffle=False, drop_last=False)
+ json_loader = DataLoader(video_dataset, batch_size=1, shuffle=False, sampler=sampler, drop_last=False)
+
+ for batch_index, batch in enumerate(json_loader, start=1):
+
+ fps = batch["fps"]
+ videoid = batch['videoid'][0]
+ audio_path = str(batch["audio_path"][0])
+ save_path = args.save_path
+ output_path = f"{save_path}/{videoid}.mp4"
+ output_audio_path = f"{save_path}/{videoid}_audio.mp4"
+
+ if args.infer_min:
+ batch["audio_len"][0] = 129
+
+ samples = hunyuan_video_sampler.predict(args, batch, wav2vec, feature_extractor, align_instance)
+
+ sample = samples['samples'][0].unsqueeze(0) # denoised latent, (bs, 16, t//4, h//8, w//8)
+ sample = sample[:, :, :batch["audio_len"][0]]
+
+ video = rearrange(sample[0], "c f h w -> f h w c")
+ video = (video * 255.).data.cpu().numpy().astype(np.uint8) # (f h w c)
+
+ torch.cuda.empty_cache()
+
+ final_frames = []
+ for frame in video:
+ final_frames.append(frame)
+ final_frames = np.stack(final_frames, axis=0)
+
+ if rank == 0:
+ from hymm_sp.data_kits.ffmpeg_utils import save_video
+ save_video(final_frames, output_path, n_rows=len(final_frames), fps=fps.item())
+ os.system(f"ffmpeg -i '{output_path}' -i '{audio_path}' -shortest '{output_audio_path}' -y -loglevel quiet; rm '{output_path}'")
+
+
+
+
+
+
+
+if __name__ == "__main__":
+ main()
+
+
+
+
+
+
+
diff --git a/hymm_sp/sample_inference_audio.py b/hymm_sp/sample_inference_audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..769836a28ce311ead5080b3badf455e1ff7fa0ba
--- /dev/null
+++ b/hymm_sp/sample_inference_audio.py
@@ -0,0 +1,230 @@
+import math
+import time
+import torch
+import random
+from loguru import logger
+from einops import rearrange
+from hymm_sp.diffusion import load_diffusion_pipeline
+from hymm_sp.helpers import get_nd_rotary_pos_embed_new
+from hymm_sp.inference import Inference
+from hymm_sp.diffusion.schedulers import FlowMatchDiscreteScheduler
+from hymm_sp.data_kits.audio_preprocessor import encode_audio, get_facemask
+
+def align_to(value, alignment):
+ return int(math.ceil(value / alignment) * alignment)
+
+class HunyuanVideoSampler(Inference):
+ def __init__(self, args, vae, vae_kwargs, text_encoder, model, text_encoder_2=None, pipeline=None,
+ device=0, logger=None):
+ super().__init__(args, vae, vae_kwargs, text_encoder, model, text_encoder_2=text_encoder_2,
+ pipeline=pipeline, device=device, logger=logger)
+
+ self.args = args
+ self.pipeline = load_diffusion_pipeline(
+ args, 0, self.vae, self.text_encoder, self.text_encoder_2, self.model,
+ device=self.device)
+ print('load hunyuan model successful... ')
+
+ def get_rotary_pos_embed(self, video_length, height, width, concat_dict={}):
+ target_ndim = 3
+ ndim = 5 - 2
+ if '884' in self.args.vae:
+ latents_size = [(video_length-1)//4+1 , height//8, width//8]
+ else:
+ latents_size = [video_length , height//8, width//8]
+
+ if isinstance(self.model.patch_size, int):
+ assert all(s % self.model.patch_size == 0 for s in latents_size), \
+ f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), " \
+ f"but got {latents_size}."
+ rope_sizes = [s // self.model.patch_size for s in latents_size]
+ elif isinstance(self.model.patch_size, list):
+ assert all(s % self.model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), \
+ f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), " \
+ f"but got {latents_size}."
+ rope_sizes = [s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)]
+
+ if len(rope_sizes) != target_ndim:
+ rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
+ head_dim = self.model.hidden_size // self.model.num_heads
+ rope_dim_list = self.model.rope_dim_list
+ if rope_dim_list is None:
+ rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
+ assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
+ freqs_cos, freqs_sin = get_nd_rotary_pos_embed_new(rope_dim_list,
+ rope_sizes,
+ theta=self.args.rope_theta,
+ use_real=True,
+ theta_rescale_factor=1,
+ concat_dict=concat_dict)
+ return freqs_cos, freqs_sin
+
+ @torch.no_grad()
+ def predict(self,
+ args, batch, wav2vec, feature_extractor, align_instance,
+ **kwargs):
+ """
+ Predict the image from the given text.
+
+ Args:
+ prompt (str or List[str]): The input text.
+ kwargs:
+ size (int): The (height, width) of the output image/video. Default is (256, 256).
+ video_length (int): The frame number of the output video. Default is 1.
+ seed (int or List[str]): The random seed for the generation. Default is a random integer.
+ negative_prompt (str or List[str]): The negative text prompt. Default is an empty string.
+ infer_steps (int): The number of inference steps. Default is 100.
+ guidance_scale (float): The guidance scale for the generation. Default is 6.0.
+ num_videos_per_prompt (int): The number of videos per prompt. Default is 1.
+ verbose (int): 0 for no log, 1 for all log, 2 for fewer log. Default is 1.
+ output_type (str): The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
+ Default is 'pil'.
+ """
+
+ out_dict = dict()
+
+ prompt = batch['text_prompt'][0]
+ image_path = str(batch["image_path"][0])
+ audio_path = str(batch["audio_path"][0])
+ neg_prompt = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion, blurring, Lens changes"
+ # videoid = batch['videoid'][0]
+ fps = batch["fps"].to(self.device)
+ audio_prompts = batch["audio_prompts"].to(self.device)
+ weight_dtype = audio_prompts.dtype
+
+ audio_prompts = [encode_audio(wav2vec, audio_feat.to(dtype=wav2vec.dtype), fps.item(), num_frames=batch["audio_len"][0]) for audio_feat in audio_prompts]
+ audio_prompts = torch.cat(audio_prompts, dim=0).to(device=self.device, dtype=weight_dtype)
+ if audio_prompts.shape[1] <= 129:
+ audio_prompts = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :1]).repeat(1,129-audio_prompts.shape[1], 1, 1, 1)], dim=1)
+ else:
+ audio_prompts = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :1]).repeat(1, 5, 1, 1, 1)], dim=1)
+
+ wav2vec.to("cpu")
+ torch.cuda.empty_cache()
+
+ uncond_audio_prompts = torch.zeros_like(audio_prompts[:,:129])
+ motion_exp = batch["motion_bucket_id_exps"].to(self.device)
+ motion_pose = batch["motion_bucket_id_heads"].to(self.device)
+
+ pixel_value_ref = batch['pixel_value_ref'].to(self.device) # (b f c h w) 取值范围[0,255]
+ face_masks = get_facemask(pixel_value_ref.clone(), align_instance, area=3.0)
+
+ pixel_value_ref = pixel_value_ref.clone().repeat(1,129,1,1,1)
+ uncond_pixel_value_ref = torch.zeros_like(pixel_value_ref)
+ pixel_value_ref = pixel_value_ref / 127.5 - 1.
+ uncond_pixel_value_ref = uncond_pixel_value_ref * 2 - 1
+
+ pixel_value_ref_for_vae = rearrange(pixel_value_ref, "b f c h w -> b c f h w")
+ uncond_uncond_pixel_value_ref = rearrange(uncond_pixel_value_ref, "b f c h w -> b c f h w")
+
+ pixel_value_llava = batch["pixel_value_ref_llava"].to(self.device)
+ pixel_value_llava = rearrange(pixel_value_llava, "b f c h w -> (b f) c h w")
+ uncond_pixel_value_llava = pixel_value_llava.clone()
+
+ # ========== Encode reference latents ==========
+ vae_dtype = self.vae.dtype
+ with torch.autocast(device_type="cuda", dtype=vae_dtype, enabled=vae_dtype != torch.float32):
+
+ if args.cpu_offload:
+ self.vae.to('cuda')
+
+ self.vae.enable_tiling()
+ ref_latents = self.vae.encode(pixel_value_ref_for_vae.clone()).latent_dist.sample()
+ uncond_ref_latents = self.vae.encode(uncond_uncond_pixel_value_ref).latent_dist.sample()
+ self.vae.disable_tiling()
+ if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor:
+ ref_latents.sub_(self.vae.config.shift_factor).mul_(self.vae.config.scaling_factor)
+ uncond_ref_latents.sub_(self.vae.config.shift_factor).mul_(self.vae.config.scaling_factor)
+ else:
+ ref_latents.mul_(self.vae.config.scaling_factor)
+ uncond_ref_latents.mul_(self.vae.config.scaling_factor)
+
+ if args.cpu_offload:
+ self.vae.to('cpu')
+ torch.cuda.empty_cache()
+
+ face_masks = torch.nn.functional.interpolate(face_masks.float().squeeze(2),
+ (ref_latents.shape[-2],
+ ref_latents.shape[-1]),
+ mode="bilinear").unsqueeze(2).to(dtype=ref_latents.dtype)
+
+
+ size = (batch['pixel_value_ref'].shape[-2], batch['pixel_value_ref'].shape[-1])
+ target_length = 129
+ target_height = align_to(size[0], 16)
+ target_width = align_to(size[1], 16)
+ concat_dict = {'mode': 'timecat', 'bias': -1}
+ # concat_dict = {}
+ freqs_cos, freqs_sin = self.get_rotary_pos_embed(
+ target_length,
+ target_height,
+ target_width,
+ concat_dict)
+ n_tokens = freqs_cos.shape[0]
+
+ generator = torch.Generator(device=self.device).manual_seed(args.seed)
+
+ debug_str = f"""
+ prompt: {prompt}
+ image_path: {image_path}
+ audio_path: {audio_path}
+ negative_prompt: {neg_prompt}
+ seed: {args.seed}
+ fps: {fps.item()}
+ infer_steps: {args.infer_steps}
+ target_height: {target_height}
+ target_width: {target_width}
+ target_length: {target_length}
+ guidance_scale: {args.cfg_scale}
+ """
+ self.logger.info(debug_str)
+ pipeline_kwargs = {
+ "cpu_offload": args.cpu_offload
+ }
+ start_time = time.time()
+ samples = self.pipeline(prompt=prompt,
+ height=target_height,
+ width=target_width,
+ frame=target_length,
+ num_inference_steps=args.infer_steps,
+ guidance_scale=args.cfg_scale, # cfg scale
+
+ negative_prompt=neg_prompt,
+ num_images_per_prompt=args.num_images,
+ generator=generator,
+ prompt_embeds=None,
+
+ ref_latents=ref_latents, # [1, 16, 1, h//8, w//8]
+ uncond_ref_latents=uncond_ref_latents,
+ pixel_value_llava=pixel_value_llava, # [1, 3, 336, 336]
+ uncond_pixel_value_llava=uncond_pixel_value_llava,
+ face_masks=face_masks, # [b f h w]
+ audio_prompts=audio_prompts,
+ uncond_audio_prompts=uncond_audio_prompts,
+ motion_exp=motion_exp,
+ motion_pose=motion_pose,
+ fps=fps,
+
+ num_videos_per_prompt=1,
+ attention_mask=None,
+ negative_prompt_embeds=None,
+ negative_attention_mask=None,
+ output_type="pil",
+ freqs_cis=(freqs_cos, freqs_sin),
+ n_tokens=n_tokens,
+ data_type='video',
+ is_progress_bar=True,
+ vae_ver=self.args.vae,
+ enable_tiling=self.args.vae_tiling,
+ **pipeline_kwargs
+ )[0]
+ if samples is None:
+ return None
+ out_dict['samples'] = samples
+ gen_time = time.time() - start_time
+ logger.info(f"Success, time: {gen_time}")
+
+ wav2vec.to(self.device)
+
+ return out_dict
+
diff --git a/hymm_sp/text_encoder/__init__.py b/hymm_sp/text_encoder/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..847d239f4373885f72a7c11fa7a1d0065a6cecec
--- /dev/null
+++ b/hymm_sp/text_encoder/__init__.py
@@ -0,0 +1,294 @@
+from dataclasses import dataclass
+from typing import Optional, Tuple
+from copy import deepcopy
+
+import torch, os
+import torch.nn as nn
+from transformers import (
+ CLIPTextModel, CLIPTokenizer, LlavaForConditionalGeneration,
+ LlamaTokenizerFast
+)
+from transformers.utils import ModelOutput
+from ..constants import TEXT_ENCODER_PATH, TOKENIZER_PATH, PRECISION_TO_TYPE
+
+CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0))
+print(f'text_encoder: cpu_offload={CPU_OFFLOAD}')
+
+def use_default(value, default):
+ return value if value is not None else default
+
+def load_text_encoder(text_encoder_type,
+ text_encoder_precision=None,
+ text_encoder_path=None,
+ logger=None,
+ device=None
+ ):
+ if text_encoder_path is None:
+ text_encoder_path = TEXT_ENCODER_PATH[text_encoder_type]
+ if logger is not None:
+ logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")
+
+ if text_encoder_type == "clipL":
+ text_encoder = CLIPTextModel.from_pretrained(text_encoder_path)
+ text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm
+ elif text_encoder_type == "llava-llama-3-8b":
+ text_encoder = LlavaForConditionalGeneration.from_pretrained(text_encoder_path, low_cpu_mem_usage=True)
+ text_encoder.final_layer_norm = text_encoder.language_model.model.norm
+ else:
+ raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
+
+ if text_encoder_precision is not None:
+ text_encoder = text_encoder.to(dtype=PRECISION_TO_TYPE[text_encoder_precision])
+
+ text_encoder.requires_grad_(False)
+
+ if logger is not None:
+ logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
+
+ if device is not None:
+ text_encoder = text_encoder.to(device)
+
+ return text_encoder, text_encoder_path
+
+def load_tokenizer(tokenizer_type,
+ tokenizer_path=None,
+ padding_side="right",
+ logger=None
+ ):
+ if tokenizer_path is None:
+ tokenizer_path = TOKENIZER_PATH[tokenizer_type]
+ if logger is not None:
+ logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
+
+ if tokenizer_type == "clipL":
+ tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77)
+ elif tokenizer_type == "llava-llama-3-8b":
+ tokenizer = LlamaTokenizerFast.from_pretrained(tokenizer_path, padding_side=padding_side)
+ else:
+ raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
+
+ return tokenizer, tokenizer_path
+
+
+@dataclass
+class TextEncoderModelOutput(ModelOutput):
+ """
+ Base class for model's outputs that also contains a pooling of the last hidden states.
+
+ Args:
+ hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
+ hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ text_outputs (`list`, *optional*, returned when `return_texts=True` is passed):
+ List of decoded texts.
+ """
+
+ hidden_state: torch.FloatTensor = None
+ attention_mask: Optional[torch.LongTensor] = None
+ hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
+ text_outputs: Optional[list] = None
+
+
+class TextEncoder(nn.Module):
+ def __init__(self,
+ text_encoder_type: str,
+ max_length: int,
+ text_encoder_precision: Optional[str] = None,
+ text_encoder_path: Optional[str] = None,
+ tokenizer_type: Optional[str] = None,
+ tokenizer_path: Optional[str] = None,
+ output_key: Optional[str] = None,
+ use_attention_mask: bool = True,
+ input_max_length: Optional[int] = None,
+ prompt_template_video: Optional[dict] = None,
+ hidden_state_skip_layer: Optional[int] = None,
+ apply_final_norm: bool = False,
+ reproduce: bool = False,
+ logger=None,
+ device=None,
+ ):
+ super().__init__()
+ self.text_encoder_type = text_encoder_type
+ self.max_length = max_length
+ self.precision = text_encoder_precision
+ self.model_path = text_encoder_path
+ self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
+ self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
+ self.use_attention_mask = use_attention_mask
+ if prompt_template_video is not None:
+ assert use_attention_mask is True, "Attention mask is True required when training videos."
+ self.input_max_length = input_max_length if input_max_length is not None else max_length
+ self.prompt_template_video = prompt_template_video
+ self.hidden_state_skip_layer = hidden_state_skip_layer
+ self.apply_final_norm = apply_final_norm
+ self.reproduce = reproduce
+ self.logger = logger
+
+ self.use_video_template = self.prompt_template_video is not None
+ if self.use_video_template:
+ if self.prompt_template_video is not None:
+ assert isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video, (
+ f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
+ )
+ assert '{}' in str(self.prompt_template_video["template"]), (
+ "`prompt_template_video['template']` must contain a placeholder `{}` for the input text, "
+ f"got {self.prompt_template_video['template']}"
+ )
+
+ if "clip" in text_encoder_type:
+ self.output_key = output_key or "pooler_output"
+ elif "llama" in text_encoder_type:
+ self.output_key = output_key or "last_hidden_state"
+ else:
+ raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
+
+ self.model, self.model_path = load_text_encoder(
+ text_encoder_type=self.text_encoder_type,
+ text_encoder_precision=self.precision,
+ text_encoder_path=self.model_path,
+ logger=self.logger,
+ device=device
+ )
+ self.dtype = self.model.dtype
+ self.device = self.model.device
+
+ self.tokenizer, self.tokenizer_path = load_tokenizer(
+ tokenizer_type=self.tokenizer_type,
+ tokenizer_path=self.tokenizer_path,
+ padding_side="right",
+ logger=self.logger
+ )
+
+ def __repr__(self):
+ return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
+
+ @staticmethod
+ def apply_text_to_template(text, template):
+ """
+ Apply text to template.
+
+ Args:
+ text (str): Input text.
+ template (str or list): Template string or list of chat conversation.
+ prevent_empty_text (bool): If Ture, we will prevent the user text from being empty
+ by adding a space. Defaults to True.
+ """
+ if isinstance(template, str):
+ # Will send string to tokenizer. Used for llm
+ return template.format(text)
+ else:
+ raise TypeError(f"Unsupported template type: {type(template)}")
+
+ def text2tokens(self, text, data_type='video', name='person'):
+ """
+ Tokenize the input text.
+
+ Args:
+ text (str or list): Input text.
+ """
+ tokenize_input_type = 'str'
+ if self.use_video_template:
+ if data_type == 'video':
+ prompt_template = self.prompt_template_video["template"]
+ else:
+ raise ValueError(f"Unsupported data type: {data_type}")
+ if isinstance(text, (list, tuple)):
+ text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
+ if isinstance(text[0], list):
+ tokenize_input_type = 'list'
+ elif isinstance(text, str):
+ text = self.apply_text_to_template(text, prompt_template)
+ if isinstance(text, list):
+ tokenize_input_type = 'list'
+ else:
+ raise TypeError(f"Unsupported text type: {type(text)}")
+
+ kwargs = dict(truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt")
+ if self.text_encoder_type == "llava-llama-3-8b":
+ if isinstance(text, list):
+ for i in range(len(text)):
+ text[i] = text[i] + '\nThe %s looks like' % name
+ elif isinstance(text, str):
+ text = text + '\nThe %s looks like' % name
+ else:
+ raise NotImplementedError
+
+ if tokenize_input_type == 'str':
+ return self.tokenizer(text, return_length=False, return_overflowing_tokens=False, return_attention_mask=True, **kwargs, )
+ elif tokenize_input_type == 'list':
+ return self.tokenizer.apply_chat_template(text, add_generation_prompt=True, tokenize=True, return_dict=True, **kwargs, )
+ else:
+ raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
+
+ def encode(self, batch_encoding, use_attention_mask=None, output_hidden_states=False, do_sample=None,
+ hidden_state_skip_layer=None, return_texts=False, data_type='image'):
+ """
+ Args:
+ batch_encoding (dict): Batch encoding from tokenizer.
+ use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask.
+ Defaults to None.
+ output_hidden_states (bool): Whether to output hidden states. If False, return the value of
+ self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer,
+ output_hidden_states will be set True. Defaults to False.
+ do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None.
+ When self.produce is False, do_sample is set to True by default.
+ hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer.
+ If None, self.output_key will be used. Defaults to None.
+ return_texts (bool): Whether to return the decoded texts. Defaults to False.
+ """
+ use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
+ hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
+ do_sample = use_default(do_sample, not self.reproduce)
+ if CPU_OFFLOAD:
+ self.model.to('cuda')
+ print(f'encode prompt: move text_encoder to cuda')
+
+ attention_mask = batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None
+ if 'pixel_value_llava' in batch_encoding:
+ outputs = self.model(
+ input_ids=batch_encoding["input_ids"].to(self.model.device),
+ attention_mask=attention_mask,
+ pixel_values=batch_encoding["pixel_value_llava"].to(self.model.device),
+ output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None)
+ else:
+ outputs = self.model(
+ input_ids=batch_encoding["input_ids"].to(self.model.device),
+ attention_mask=attention_mask,
+ output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,)
+ if hidden_state_skip_layer is not None:
+ last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
+ # Real last hidden state already has layer norm applied. So here we only apply it
+ # for intermediate layers.
+ if hidden_state_skip_layer > 0 and self.apply_final_norm:
+ last_hidden_state = self.model.final_layer_norm(last_hidden_state)
+ else:
+ last_hidden_state = outputs[self.output_key]
+
+ # Remove hidden states of instruction tokens, only keep prompt tokens.
+ if self.use_video_template:
+ if data_type == 'video':
+ crop_start = self.prompt_template_video.get("crop_start", -1)
+ else:
+ raise ValueError(f"Unsupported data type: {data_type}")
+ if crop_start > 0:
+ last_hidden_state = last_hidden_state[:, crop_start:]
+ attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None
+ if CPU_OFFLOAD:
+ self.model.to('cpu')
+ torch.cuda.empty_cache()
+ print(f'encode prompt successful: move text_encoder to cpu')
+ if output_hidden_states:
+ return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
+ return TextEncoderModelOutput(last_hidden_state, attention_mask)
+
+ def forward(self, text, use_attention_mask=None, output_hidden_states=False, do_sample=False,
+ hidden_state_skip_layer=None, return_texts=False):
+ batch_encoding = self.text2tokens(text)
+ return self.encode(batch_encoding, use_attention_mask=use_attention_mask,
+ output_hidden_states=output_hidden_states, do_sample=do_sample,
+ hidden_state_skip_layer=hidden_state_skip_layer, return_texts=return_texts)
diff --git a/hymm_sp/text_encoder/__pycache__/__init__.cpython-310.pyc b/hymm_sp/text_encoder/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..86ad5c067a59060e696bd83cc3528abef5dbd32d
Binary files /dev/null and b/hymm_sp/text_encoder/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/vae/__init__.py b/hymm_sp/vae/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d8fccc2dd3c139f9510fecc51f1a89fc92fac0b6
--- /dev/null
+++ b/hymm_sp/vae/__init__.py
@@ -0,0 +1,51 @@
+import torch
+from pathlib import Path
+from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D
+from ..constants import VAE_PATH, PRECISION_TO_TYPE
+
+def load_vae(vae_type,
+ vae_precision=None,
+ sample_size=None,
+ vae_path=None,
+ logger=None,
+ device=None
+ ):
+ if vae_path is None:
+ vae_path = VAE_PATH[vae_type]
+ vae_compress_spec, _, _ = vae_type.split("-")
+ length = len(vae_compress_spec)
+ if length == 3:
+ if logger is not None:
+ logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}")
+ config = AutoencoderKLCausal3D.load_config(vae_path)
+ if sample_size:
+ vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size)
+ else:
+ vae = AutoencoderKLCausal3D.from_config(config)
+ ckpt = torch.load(Path(vae_path) / "pytorch_model.pt", map_location=vae.device)
+ if "state_dict" in ckpt:
+ ckpt = ckpt["state_dict"]
+ # vae_ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")}
+ vae_ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items()}
+ vae.load_state_dict(vae_ckpt)
+
+ spatial_compression_ratio = vae.config.spatial_compression_ratio
+ time_compression_ratio = vae.config.time_compression_ratio
+ else:
+ raise ValueError(f"Invalid VAE model: {vae_type}. Must be 3D VAE in the format of '???-*'.")
+
+ if vae_precision is not None:
+ vae = vae.to(dtype=PRECISION_TO_TYPE[vae_precision])
+
+ vae.requires_grad_(False)
+
+ if logger is not None:
+ logger.info(f"VAE to dtype: {vae.dtype}")
+
+ if device is not None:
+ vae = vae.to(device)
+
+ # Set vae to eval mode, even though it's dropout rate is 0.
+ vae.eval()
+
+ return vae, vae_path, spatial_compression_ratio, time_compression_ratio
diff --git a/hymm_sp/vae/__pycache__/__init__.cpython-310.pyc b/hymm_sp/vae/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a7fe33e2aef6c432562576d660b45f3dded5e717
Binary files /dev/null and b/hymm_sp/vae/__pycache__/__init__.cpython-310.pyc differ
diff --git a/hymm_sp/vae/__pycache__/autoencoder_kl_causal_3d.cpython-310.pyc b/hymm_sp/vae/__pycache__/autoencoder_kl_causal_3d.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..be7c7df0804ba2924cfca0cd2a26114075d7e050
Binary files /dev/null and b/hymm_sp/vae/__pycache__/autoencoder_kl_causal_3d.cpython-310.pyc differ
diff --git a/hymm_sp/vae/__pycache__/unet_causal_3d_blocks.cpython-310.pyc b/hymm_sp/vae/__pycache__/unet_causal_3d_blocks.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8f4cb1823d3a131c56fddb148418543ededf74bc
Binary files /dev/null and b/hymm_sp/vae/__pycache__/unet_causal_3d_blocks.cpython-310.pyc differ
diff --git a/hymm_sp/vae/__pycache__/vae.cpython-310.pyc b/hymm_sp/vae/__pycache__/vae.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4c91be34842b1a77a890d6c92892a1d5992c2681
Binary files /dev/null and b/hymm_sp/vae/__pycache__/vae.cpython-310.pyc differ
diff --git a/hymm_sp/vae/autoencoder_kl_causal_3d.py b/hymm_sp/vae/autoencoder_kl_causal_3d.py
new file mode 100644
index 0000000000000000000000000000000000000000..2efff5c1687c77d3f13073429e91c504b0d2807e
--- /dev/null
+++ b/hymm_sp/vae/autoencoder_kl_causal_3d.py
@@ -0,0 +1,903 @@
+import os
+import math
+from typing import Dict, Optional, Tuple, Union
+from dataclasses import dataclass
+from torch import distributed as dist
+import loguru
+import torch
+import torch.nn as nn
+import torch.distributed
+
+RECOMMENDED_DTYPE = torch.float16
+
+def mpi_comm():
+ from mpi4py import MPI
+ return MPI.COMM_WORLD
+
+from torch import distributed as dist
+def mpi_rank():
+ return dist.get_rank()
+
+def mpi_world_size():
+ return dist.get_world_size()
+
+
+class TorchIGather:
+ def __init__(self):
+ if not torch.distributed.is_initialized():
+ rank = mpi_rank()
+ world_size = mpi_world_size()
+ os.environ['RANK'] = str(rank)
+ os.environ['WORLD_SIZE'] = str(world_size)
+ os.environ['MASTER_ADDR'] = '127.0.0.1'
+ os.environ['MASTER_PORT'] = str(29500)
+ torch.cuda.set_device(rank)
+ torch.distributed.init_process_group('nccl')
+
+ self.handles = []
+ self.buffers = []
+
+ self.world_size = dist.get_world_size()
+ self.rank = dist.get_rank()
+ self.groups_ids = []
+ self.group = {}
+
+ for i in range(self.world_size):
+ self.groups_ids.append(tuple(range(i + 1)))
+
+ for group in self.groups_ids:
+ new_group = dist.new_group(group)
+ self.group[group[-1]] = new_group
+
+
+ def gather(self, tensor, n_rank=None):
+ if n_rank is not None:
+ group = self.group[n_rank - 1]
+ else:
+ group = None
+ rank = self.rank
+ tensor = tensor.to(RECOMMENDED_DTYPE)
+ if rank == 0:
+ buffer = [torch.empty_like(tensor) for i in range(n_rank)]
+ else:
+ buffer = None
+ self.buffers.append(buffer)
+ handle = torch.distributed.gather(tensor, buffer, async_op=True, group=group)
+ self.handles.append(handle)
+
+ def wait(self):
+ for handle in self.handles:
+ handle.wait()
+
+ def clear(self):
+ self.buffers = []
+ self.handles = []
+
+
+from diffusers.configuration_utils import ConfigMixin, register_to_config
+try:
+ # This diffusers is modified and packed in the mirror.
+ from diffusers.loaders import FromOriginalVAEMixin
+except ImportError:
+ # Use this to be compatible with the original diffusers.
+ from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
+from diffusers.utils.accelerate_utils import apply_forward_hook
+from diffusers.models.attention_processor import (
+ ADDED_KV_ATTENTION_PROCESSORS,
+ CROSS_ATTENTION_PROCESSORS,
+ Attention,
+ AttentionProcessor,
+ AttnAddedKVProcessor,
+ AttnProcessor,
+)
+from diffusers.models.modeling_outputs import AutoencoderKLOutput
+from diffusers.models.modeling_utils import ModelMixin
+from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D
+
+"""
+use trt need install polygraphy and onnx-graphsurgeon
+python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
+"""
+try:
+ from polygraphy.backend.trt import ( TrtRunner, EngineFromBytes)
+ from polygraphy.backend.common import BytesFromPath
+except:
+ print("TrtRunner or EngineFromBytes is not available, you can not use trt engine")
+
+@dataclass
+class DecoderOutput2(BaseOutput):
+ sample: torch.FloatTensor
+ posterior: Optional[DiagonalGaussianDistribution] = None
+
+
+MODEL_OUTPUT_PATH = os.environ.get('MODEL_OUTPUT_PATH')
+MODEL_BASE = os.environ.get('MODEL_BASE')
+
+CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0))
+DISABLE_SP = int(os.environ.get("DISABLE_SP", 0))
+print(f'vae: cpu_offload={CPU_OFFLOAD}, DISABLE_SP={DISABLE_SP}')
+
+
+class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
+ r"""
+ A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
+
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
+ for all models (such as downloading or saving).
+
+ Parameters:
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
+ Tuple of downsample block types.
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
+ Tuple of upsample block types.
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
+ Tuple of block output channels.
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
+ latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
+ scaling_factor (`float`, *optional*, defaults to 0.18215):
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
+ force_upcast (`bool`, *optional*, default to `True`):
+ If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
+ can be fine-tuned / trained to a lower range without loosing too much precision in which case
+ `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
+ """
+
+ _supports_gradient_checkpointing = True
+
+ @register_to_config
+ def __init__(
+ self,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),
+ up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),
+ block_out_channels: Tuple[int] = (64,),
+ layers_per_block: int = 1,
+ act_fn: str = "silu",
+ latent_channels: int = 4,
+ norm_num_groups: int = 32,
+ sample_size: int = 32,
+ sample_tsize: int = 64,
+ scaling_factor: float = 0.18215,
+ force_upcast: float = True,
+ spatial_compression_ratio: int = 8,
+ time_compression_ratio: int = 4,
+ disable_causal_conv: bool = False,
+ mid_block_add_attention: bool = True,
+ mid_block_causal_attn: bool = False,
+ use_trt_engine: bool = False,
+ nccl_gather: bool = True,
+ engine_path: str = f"{MODEL_BASE}/HYVAE_decoder+conv_256x256xT_fp16_H20.engine",
+ ):
+ super().__init__()
+
+ self.disable_causal_conv = disable_causal_conv
+ self.time_compression_ratio = time_compression_ratio
+
+ self.encoder = EncoderCausal3D(
+ in_channels=in_channels,
+ out_channels=latent_channels,
+ down_block_types=down_block_types,
+ block_out_channels=block_out_channels,
+ layers_per_block=layers_per_block,
+ act_fn=act_fn,
+ norm_num_groups=norm_num_groups,
+ double_z=True,
+ time_compression_ratio=time_compression_ratio,
+ spatial_compression_ratio=spatial_compression_ratio,
+ disable_causal=disable_causal_conv,
+ mid_block_add_attention=mid_block_add_attention,
+ mid_block_causal_attn=mid_block_causal_attn,
+ )
+
+ self.decoder = DecoderCausal3D(
+ in_channels=latent_channels,
+ out_channels=out_channels,
+ up_block_types=up_block_types,
+ block_out_channels=block_out_channels,
+ layers_per_block=layers_per_block,
+ norm_num_groups=norm_num_groups,
+ act_fn=act_fn,
+ time_compression_ratio=time_compression_ratio,
+ spatial_compression_ratio=spatial_compression_ratio,
+ disable_causal=disable_causal_conv,
+ mid_block_add_attention=mid_block_add_attention,
+ mid_block_causal_attn=mid_block_causal_attn,
+ )
+
+ self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
+ self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
+
+ self.use_slicing = False
+ self.use_spatial_tiling = False
+ self.use_temporal_tiling = False
+
+
+ # only relevant if vae tiling is enabled
+ self.tile_sample_min_tsize = sample_tsize
+ self.tile_latent_min_tsize = sample_tsize // time_compression_ratio
+
+ self.tile_sample_min_size = self.config.sample_size
+ sample_size = (
+ self.config.sample_size[0]
+ if isinstance(self.config.sample_size, (list, tuple))
+ else self.config.sample_size
+ )
+ self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
+ self.tile_overlap_factor = 0.25
+
+ use_trt_engine = False #if CPU_OFFLOAD else True
+ # ============= parallism related code ===================
+ self.parallel_decode = use_trt_engine
+ self.nccl_gather = nccl_gather
+
+ # only relevant if parallel_decode is enabled
+ self.gather_to_rank0 = self.parallel_decode
+
+ self.engine_path = engine_path
+
+ self.use_trt_decoder = use_trt_engine
+
+ @property
+ def igather(self):
+ assert self.nccl_gather and self.gather_to_rank0
+ if hasattr(self, '_igather'):
+ return self._igather
+ else:
+ self._igather = TorchIGather()
+ return self._igather
+
+ @property
+ def use_padding(self):
+ return (
+ self.use_trt_decoder
+ # dist.gather demands all processes possess to have the same tile shape.
+ or (self.nccl_gather and self.gather_to_rank0)
+ )
+
+ def _set_gradient_checkpointing(self, module, value=False):
+ if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
+ module.gradient_checkpointing = value
+
+ def enable_temporal_tiling(self, use_tiling: bool = True):
+ self.use_temporal_tiling = use_tiling
+
+ def disable_temporal_tiling(self):
+ self.enable_temporal_tiling(False)
+
+ def enable_spatial_tiling(self, use_tiling: bool = True):
+ self.use_spatial_tiling = use_tiling
+
+ def disable_spatial_tiling(self):
+ self.enable_spatial_tiling(False)
+
+ def enable_tiling(self, use_tiling: bool = True):
+ r"""
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+ processing larger images.
+ """
+ self.enable_spatial_tiling(use_tiling)
+ self.enable_temporal_tiling(use_tiling)
+
+ def disable_tiling(self):
+ r"""
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
+ decoding in one step.
+ """
+ self.disable_spatial_tiling()
+ self.disable_temporal_tiling()
+
+ def enable_slicing(self):
+ r"""
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+ """
+ self.use_slicing = True
+
+ def disable_slicing(self):
+ r"""
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
+ decoding in one step.
+ """
+ self.use_slicing = False
+
+
+ def load_trt_decoder(self):
+ self.use_trt_decoder = True
+ self.engine = EngineFromBytes(BytesFromPath(self.engine_path))
+
+ self.trt_decoder_runner = TrtRunner(self.engine)
+ self.activate_trt_decoder()
+
+ def disable_trt_decoder(self):
+ self.use_trt_decoder = False
+ del self.engine
+
+ def activate_trt_decoder(self):
+ self.trt_decoder_runner.activate()
+
+ def deactivate_trt_decoder(self):
+ self.trt_decoder_runner.deactivate()
+
+ @property
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
+ r"""
+ Returns:
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
+ indexed by its weight name.
+ """
+ # set recursively
+ processors = {}
+
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
+ if hasattr(module, "get_processor"):
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
+
+ for sub_name, child in module.named_children():
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
+
+ return processors
+
+ for name, module in self.named_children():
+ fn_recursive_add_processors(name, module, processors)
+
+ return processors
+
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
+ def set_attn_processor(
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
+ ):
+ r"""
+ Sets the attention processor to use to compute attention.
+
+ Parameters:
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
+ for **all** `Attention` layers.
+
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
+ processor. This is strongly recommended when setting trainable attention processors.
+
+ """
+ count = len(self.attn_processors.keys())
+
+ if isinstance(processor, dict) and len(processor) != count:
+ raise ValueError(
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
+ )
+
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
+ if hasattr(module, "set_processor"):
+ if not isinstance(processor, dict):
+ module.set_processor(processor, _remove_lora=_remove_lora)
+ else:
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
+
+ for sub_name, child in module.named_children():
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
+
+ for name, module in self.named_children():
+ fn_recursive_attn_processor(name, module, processor)
+
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
+ def set_default_attn_processor(self):
+ """
+ Disables custom attention processors and sets the default attention implementation.
+ """
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
+ processor = AttnAddedKVProcessor()
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
+ processor = AttnProcessor()
+ else:
+ raise ValueError(
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
+ )
+
+ self.set_attn_processor(processor, _remove_lora=True)
+
+ @apply_forward_hook
+ def encode(
+ self, x: torch.FloatTensor, return_dict: bool = True
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
+ """
+ Encode a batch of images into latents.
+
+ Args:
+ x (`torch.FloatTensor`): Input batch of images.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
+
+ Returns:
+ The latent representations of the encoded images. If `return_dict` is True, a
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
+ """
+ assert len(x.shape) == 5, "The input tensor should have 5 dimensions"
+
+ if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
+ return self.temporal_tiled_encode(x, return_dict=return_dict)
+
+ if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
+ return self.spatial_tiled_encode(x, return_dict=return_dict)
+
+ if self.use_slicing and x.shape[0] > 1:
+ encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
+ h = torch.cat(encoded_slices)
+ else:
+ h = self.encoder(x)
+
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+
+ if not return_dict:
+ return (posterior,)
+
+ return AutoencoderKLOutput(latent_dist=posterior)
+
+ def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
+ assert len(z.shape) == 5, "The input tensor should have 5 dimensions"
+
+ if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
+ return self.temporal_tiled_decode(z, return_dict=return_dict)
+
+ if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
+ return self.spatial_tiled_decode(z, return_dict=return_dict)
+
+ if self.use_trt_decoder:
+ # For unknown reason, `copy_outputs_to_host` must be set to True
+ dec = self.trt_decoder_runner.infer({"input": z.to(RECOMMENDED_DTYPE).contiguous()}, copy_outputs_to_host=True)["output"].to(device=z.device, dtype=z.dtype)
+ else:
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
+
+ @apply_forward_hook
+ def decode(
+ self, z: torch.FloatTensor, return_dict: bool = True, generator=None
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
+ """
+ Decode a batch of images.
+
+ Args:
+ z (`torch.FloatTensor`): Input batch of latent vectors.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.vae.DecoderOutput`] or `tuple`:
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
+ returned.
+
+ """
+
+ if self.parallel_decode:
+ if z.dtype != RECOMMENDED_DTYPE:
+ loguru.logger.warning(
+ f'For better performance, using {RECOMMENDED_DTYPE} for both latent features and model parameters is recommended.'
+ f'Current latent dtype {z.dtype}. '
+ f'Please note that the input latent will be cast to {RECOMMENDED_DTYPE} internally when decoding.'
+ )
+ z = z.to(RECOMMENDED_DTYPE)
+
+ if self.use_slicing and z.shape[0] > 1:
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
+ decoded = torch.cat(decoded_slices)
+ else:
+ decoded = self._decode(z).sample
+
+ if not return_dict:
+ return (decoded,)
+
+ return DecoderOutput(sample=decoded)
+
+ def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
+ blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
+ if blend_extent == 0:
+ return b
+
+ a_region = a[..., -blend_extent:, :]
+ b_region = b[..., :blend_extent, :]
+
+ weights = torch.arange(blend_extent, device=a.device, dtype=a.dtype) / blend_extent
+ weights = weights.view(1, 1, 1, blend_extent, 1)
+
+ blended = a_region * (1 - weights) + b_region * weights
+
+ b[..., :blend_extent, :] = blended
+ return b
+
+ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
+ blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
+ if blend_extent == 0:
+ return b
+
+ a_region = a[..., -blend_extent:]
+ b_region = b[..., :blend_extent]
+
+ weights = torch.arange(blend_extent, device=a.device, dtype=a.dtype) / blend_extent
+ weights = weights.view(1, 1, 1, 1, blend_extent)
+
+ blended = a_region * (1 - weights) + b_region * weights
+
+ b[..., :blend_extent] = blended
+ return b
+ def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
+ blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
+ if blend_extent == 0:
+ return b
+
+ a_region = a[..., -blend_extent:, :, :]
+ b_region = b[..., :blend_extent, :, :]
+
+ weights = torch.arange(blend_extent, device=a.device, dtype=a.dtype) / blend_extent
+ weights = weights.view(1, 1, blend_extent, 1, 1)
+
+ blended = a_region * (1 - weights) + b_region * weights
+
+ b[..., :blend_extent, :, :] = blended
+ return b
+
+ def spatial_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False) -> AutoencoderKLOutput:
+ r"""Encode a batch of images using a tiled encoder.
+
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
+ steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
+ different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
+ tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
+ output, but they should be much less noticeable.
+
+ Args:
+ x (`torch.FloatTensor`): Input batch of images.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
+ If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
+ `tuple` is returned.
+ """
+ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
+ blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
+ row_limit = self.tile_latent_min_size - blend_extent
+
+ # Split video into tiles and encode them separately.
+ rows = []
+ for i in range(0, x.shape[-2], overlap_size):
+ row = []
+ for j in range(0, x.shape[-1], overlap_size):
+ tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
+ tile = self.encoder(tile)
+ tile = self.quant_conv(tile)
+ row.append(tile)
+ rows.append(row)
+ result_rows = []
+ for i, row in enumerate(rows):
+ result_row = []
+ for j, tile in enumerate(row):
+ # blend the above tile and the left tile
+ # to the current tile and add the current tile to the result row
+ if i > 0:
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
+ if j > 0:
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
+ result_row.append(tile[:, :, :, :row_limit, :row_limit])
+ result_rows.append(torch.cat(result_row, dim=-1))
+
+ moments = torch.cat(result_rows, dim=-2)
+ if return_moments:
+ return moments
+
+ posterior = DiagonalGaussianDistribution(moments)
+ if not return_dict:
+ return (posterior,)
+
+ return AutoencoderKLOutput(latent_dist=posterior)
+
+
+ def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
+ r"""
+ Decode a batch of images using a tiled decoder.
+
+ Args:
+ z (`torch.FloatTensor`): Input batch of latent vectors.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
+
+ Returns:
+ [`~models.vae.DecoderOutput`] or `tuple`:
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
+ returned.
+ """
+ overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
+ blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
+ row_limit = self.tile_sample_min_size - blend_extent
+
+ # Split z into overlapping tiles and decode them separately.
+ # The tiles have an overlap to avoid seams between tiles.
+ if self.parallel_decode:
+
+ rank = mpi_rank()
+ torch.cuda.set_device(rank) # set device for trt_runner
+ world_size = mpi_world_size()
+
+ tiles = []
+ afters_if_padding = []
+ for i in range(0, z.shape[-2], overlap_size):
+ for j in range(0, z.shape[-1], overlap_size):
+ tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
+
+ if self.use_padding and (tile.shape[-2] < self.tile_latent_min_size or tile.shape[-1] < self.tile_latent_min_size):
+ from torch.nn import functional as F
+ after_h = tile.shape[-2] * 8
+ after_w = tile.shape[-1] * 8
+ padding = (0, self.tile_latent_min_size - tile.shape[-1], 0, self.tile_latent_min_size - tile.shape[-2], 0, 0)
+ tile = F.pad(tile, padding, "replicate").to(device=tile.device, dtype=tile.dtype)
+ afters_if_padding.append((after_h, after_w))
+ else:
+ afters_if_padding.append(None)
+
+ tiles.append(tile)
+
+
+ # balance tasks
+ ratio = math.ceil(len(tiles) / world_size)
+ tiles_curr_rank = tiles[rank * ratio: None if rank == world_size - 1 else (rank + 1) * ratio]
+
+ decoded_results = []
+
+
+ total = len(tiles)
+ n_task = ([ratio] * (total // ratio) + ([total % ratio] if total % ratio else []))
+ n_task = n_task + [0] * (8 - len(n_task))
+
+ for i, tile in enumerate(tiles_curr_rank):
+ if self.use_trt_decoder:
+ # For unknown reason, `copy_outputs_to_host` must be set to True
+ decoded = self.trt_decoder_runner.infer(
+ {"input": tile.to(RECOMMENDED_DTYPE).contiguous()},
+ copy_outputs_to_host=True
+ )["output"].to(device=z.device, dtype=z.dtype)
+ decoded_results.append(decoded)
+ else:
+ decoded_results.append(self.decoder(self.post_quant_conv(tile)))
+
+
+ def find(n):
+ return next((i for i, task_n in enumerate(n_task) if task_n < n), len(n_task))
+
+
+ if self.nccl_gather and self.gather_to_rank0:
+ self.igather.gather(decoded, n_rank=find(i + 1))
+
+ if not self.nccl_gather:
+ if self.gather_to_rank0:
+ decoded_results = mpi_comm().gather(decoded_results, root=0)
+ if rank != 0:
+ return DecoderOutput(sample=None)
+ else:
+ decoded_results = mpi_comm().allgather(decoded_results)
+
+ decoded_results = sum(decoded_results, [])
+ else:
+ # [Kevin]:
+ # We expect all tiles obtained from the same rank have the same shape.
+ # Shapes among ranks can differ due to the imbalance of task assignment.
+ if self.gather_to_rank0:
+ if rank == 0:
+ self.igather.wait()
+ gather_results = self.igather.buffers
+ self.igather.clear()
+ else:
+ raise NotImplementedError('The old `allgather` implementation is deprecated for nccl plan.')
+
+ if rank != 0 and self.gather_to_rank0:
+ return DecoderOutput(sample=None)
+
+ decoded_results = [col[i] for i in range(max([len(k) for k in gather_results])) for col in gather_results if i < len(col)]
+
+
+ # Crop the padding region in pixel level
+ if self.use_padding:
+ new_decoded_results = []
+ for after, dec in zip(afters_if_padding, decoded_results):
+ if after is not None:
+ after_h, after_w = after
+ new_decoded_results.append(dec[:, :, :, :after_h, :after_w])
+ else:
+ new_decoded_results.append(dec)
+ decoded_results = new_decoded_results
+
+ rows = []
+ decoded_results_iter = iter(decoded_results)
+ for i in range(0, z.shape[-2], overlap_size):
+ row = []
+ for j in range(0, z.shape[-1], overlap_size):
+ row.append(next(decoded_results_iter).to(rank))
+ rows.append(row)
+ else:
+ rows = []
+ for i in range(0, z.shape[-2], overlap_size):
+ row = []
+ for j in range(0, z.shape[-1], overlap_size):
+ tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
+ tile = self.post_quant_conv(tile)
+ decoded = self.decoder(tile)
+ row.append(decoded)
+ rows.append(row)
+
+ result_rows = []
+ for i, row in enumerate(rows):
+ result_row = []
+ for j, tile in enumerate(row):
+ # blend the above tile and the left tile
+ # to the current tile and add the current tile to the result row
+ if i > 0:
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
+ if j > 0:
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
+ result_row.append(tile[:, :, :, :row_limit, :row_limit])
+ result_rows.append(torch.cat(result_row, dim=-1))
+
+ dec = torch.cat(result_rows, dim=-2)
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
+
+ def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
+ assert not self.disable_causal_conv, "Temporal tiling is only compatible with causal convolutions."
+
+ B, C, T, H, W = x.shape
+ overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
+ blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
+ t_limit = self.tile_latent_min_tsize - blend_extent
+
+ # Split the video into tiles and encode them separately.
+ row = []
+ for i in range(0, T, overlap_size):
+ tile = x[:, :, i : i + self.tile_sample_min_tsize + 1, :, :]
+ if self.use_spatial_tiling and (tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size):
+ tile = self.spatial_tiled_encode(tile, return_moments=True)
+ else:
+ tile = self.encoder(tile)
+ tile = self.quant_conv(tile)
+ if i > 0:
+ tile = tile[:, :, 1:, :, :]
+ row.append(tile)
+ result_row = []
+ for i, tile in enumerate(row):
+ if i > 0:
+ tile = self.blend_t(row[i - 1], tile, blend_extent)
+ result_row.append(tile[:, :, :t_limit, :, :])
+ else:
+ result_row.append(tile[:, :, :t_limit+1, :, :])
+
+ moments = torch.cat(result_row, dim=2)
+ posterior = DiagonalGaussianDistribution(moments)
+
+ if not return_dict:
+ return (posterior,)
+
+ return AutoencoderKLOutput(latent_dist=posterior)
+
+ def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
+ # Split z into overlapping tiles and decode them separately.
+ assert not self.disable_causal_conv, "Temporal tiling is only supported with causal convolutions."
+
+ B, C, T, H, W = z.shape
+ overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
+ blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
+ t_limit = self.tile_sample_min_tsize - blend_extent
+ rank = 0 if CPU_OFFLOAD or DISABLE_SP else mpi_rank()
+ row = []
+ for i in range(0, T, overlap_size):
+ tile = z[:, :, i : i + self.tile_latent_min_tsize + 1, :, :]
+ if self.use_spatial_tiling and (tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size):
+ decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
+ else:
+ tile = self.post_quant_conv(tile)
+ decoded = self.decoder(tile)
+ if i > 0 and (not (self.parallel_decode and self.gather_to_rank0) or rank == 0):
+ decoded = decoded[:, :, 1:, :, :]
+ row.append(decoded)
+ if not CPU_OFFLOAD and not DISABLE_SP and self.parallel_decode and self.gather_to_rank0 and rank != 0:
+ return DecoderOutput(sample=None)
+ result_row = []
+ for i, tile in enumerate(row):
+ if i > 0:
+ tile = self.blend_t(row[i - 1], tile, blend_extent)
+ result_row.append(tile[:, :, :t_limit, :, :])
+ else:
+ result_row.append(tile[:, :, :t_limit+1, :, :])
+
+ dec = torch.cat(result_row, dim=2)
+ if not return_dict:
+ return (dec,)
+
+ return DecoderOutput(sample=dec)
+
+ def forward(
+ self,
+ sample: torch.FloatTensor,
+ sample_posterior: bool = False,
+ return_dict: bool = True,
+ return_posterior: bool = False,
+ generator: Optional[torch.Generator] = None,
+ ) -> Union[DecoderOutput2, torch.FloatTensor]:
+ r"""
+ Args:
+ sample (`torch.FloatTensor`): Input sample.
+ sample_posterior (`bool`, *optional*, defaults to `False`):
+ Whether to sample from the posterior.
+ return_dict (`bool`, *optional*, defaults to `True`):
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
+ """
+ x = sample
+ posterior = self.encode(x).latent_dist
+ if sample_posterior:
+ z = posterior.sample(generator=generator)
+ else:
+ z = posterior.mode()
+ dec = self.decode(z).sample
+
+ if not return_dict:
+ if return_posterior:
+ return (dec, posterior)
+ else:
+ return (dec,)
+ if return_posterior:
+ return DecoderOutput2(sample=dec, posterior=posterior)
+ else:
+ return DecoderOutput2(sample=dec)
+
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
+ def fuse_qkv_projections(self):
+ """
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
+
+
+
+ This API is 🧪 experimental.
+
+
+ """
+ self.original_attn_processors = None
+
+ for _, attn_processor in self.attn_processors.items():
+ if "Added" in str(attn_processor.__class__.__name__):
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
+
+ self.original_attn_processors = self.attn_processors
+
+ for module in self.modules():
+ if isinstance(module, Attention):
+ module.fuse_projections(fuse=True)
+
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
+ def unfuse_qkv_projections(self):
+ """Disables the fused QKV projection if enabled.
+
+
+
+ This API is 🧪 experimental.
+
+
+
+ """
+ if self.original_attn_processors is not None:
+ self.set_attn_processor(self.original_attn_processors)
diff --git a/hymm_sp/vae/unet_causal_3d_blocks.py b/hymm_sp/vae/unet_causal_3d_blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..021c7cf21b2da91ded87c1710451b1cf21b47c46
--- /dev/null
+++ b/hymm_sp/vae/unet_causal_3d_blocks.py
@@ -0,0 +1,884 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import Any, Dict, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+from torch import nn
+from einops import rearrange
+
+from diffusers.utils import is_torch_version, logging
+from diffusers.models.activations import get_activation
+from diffusers.models.attention_processor import SpatialNorm
+from diffusers.models.attention_processor import Attention
+from diffusers.models.normalization import AdaGroupNorm
+from diffusers.models.normalization import RMSNorm
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None):
+ seq_len = n_frame * n_hw
+ mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
+ for i in range(seq_len):
+ i_frame = i // n_hw
+ mask[i, : (i_frame + 1) * n_hw] = 0
+ if batch_size is not None:
+ mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
+ return mask
+
+
+class CausalConv3d(nn.Module):
+ def __init__(
+ self,
+ chan_in,
+ chan_out,
+ kernel_size: Union[int, Tuple[int, int, int]],
+ stride: Union[int, Tuple[int, int, int]] = 1,
+ dilation: Union[int, Tuple[int, int, int]] = 1,
+ pad_mode = 'replicate',
+ disable_causal=False,
+ **kwargs
+ ):
+ super().__init__()
+
+ self.pad_mode = pad_mode
+ if disable_causal:
+ padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2)
+ else:
+ padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0) # W, H, T
+ self.time_causal_padding = padding
+
+ self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride = stride, dilation = dilation, **kwargs)
+
+ def forward(self, x):
+ x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
+ return self.conv(x)
+
+class CausalAvgPool3d(nn.Module):
+ def __init__(
+ self,
+ kernel_size: Union[int, Tuple[int, int, int]],
+ stride: Union[int, Tuple[int, int, int]],
+ pad_mode = 'replicate',
+ disable_causal=False,
+ **kwargs
+ ):
+ super().__init__()
+
+ self.pad_mode = pad_mode
+ if disable_causal:
+ padding = (0, 0, 0, 0, 0, 0)
+ else:
+ padding = (0, 0, 0, 0, stride - 1, 0) # W, H, T
+ self.time_causal_padding = padding
+
+ self.conv = nn.AvgPool3d(kernel_size, stride=stride, ceil_mode=True, **kwargs)
+ self.pad_mode = pad_mode
+
+ def forward(self, x):
+ x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
+ return self.conv(x)
+
+class UpsampleCausal3D(nn.Module):
+ """A 3D upsampling layer with an optional convolution.
+
+ Parameters:
+ channels (`int`):
+ number of channels in the inputs and outputs.
+ use_conv (`bool`, default `False`):
+ option to use a convolution.
+ use_conv_transpose (`bool`, default `False`):
+ option to use a convolution transpose.
+ out_channels (`int`, optional):
+ number of output channels. Defaults to `channels`.
+ name (`str`, default `conv`):
+ name of the upsampling 3D layer.
+ """
+
+ def __init__(
+ self,
+ channels: int,
+ use_conv: bool = False,
+ use_conv_transpose: bool = False,
+ out_channels: Optional[int] = None,
+ name: str = "conv",
+ kernel_size: Optional[int] = None,
+ padding=1,
+ norm_type=None,
+ eps=None,
+ elementwise_affine=None,
+ bias=True,
+ interpolate=True,
+ upsample_factor=(2, 2, 2),
+ disable_causal=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_conv_transpose = use_conv_transpose
+ self.name = name
+ self.interpolate = interpolate
+ self.upsample_factor = upsample_factor
+ self.disable_causal = disable_causal
+
+ if norm_type == "ln_norm":
+ self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
+ elif norm_type == "rms_norm":
+ self.norm = RMSNorm(channels, eps, elementwise_affine)
+ elif norm_type is None:
+ self.norm = None
+ else:
+ raise ValueError(f"unknown norm_type: {norm_type}")
+
+ conv = None
+ if use_conv_transpose:
+ assert False, "Not Implement yet"
+ if kernel_size is None:
+ kernel_size = 4
+ conv = nn.ConvTranspose2d(
+ channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias
+ )
+ elif use_conv:
+ if kernel_size is None:
+ kernel_size = 3
+ conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias, disable_causal=disable_causal)
+
+ if name == "conv":
+ self.conv = conv
+ else:
+ self.Conv2d_0 = conv
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ output_size: Optional[int] = None,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ assert hidden_states.shape[1] == self.channels
+
+ if self.norm is not None:
+ assert False, "Not Implement yet"
+ hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
+
+ if self.use_conv_transpose:
+ return self.conv(hidden_states)
+
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
+ # https://github.com/pytorch/pytorch/issues/86679
+ dtype = hidden_states.dtype
+ if dtype == torch.bfloat16:
+ hidden_states = hidden_states.to(torch.float32)
+
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
+ if hidden_states.shape[0] >= 64:
+ hidden_states = hidden_states.contiguous()
+
+ # if `output_size` is passed we force the interpolation output
+ # size and do not make use of `scale_factor=2`
+ if self.interpolate:
+ B, C, T, H, W = hidden_states.shape
+ if not self.disable_causal:
+ first_h, other_h = hidden_states.split((1, T-1), dim=2)
+ if output_size is None:
+ if T > 1:
+ other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest")
+
+ first_h = first_h.squeeze(2)
+ first_h = F.interpolate(first_h, scale_factor=self.upsample_factor[1:], mode="nearest")
+ first_h = first_h.unsqueeze(2)
+ else:
+ assert False, "Not Implement yet"
+ other_h = F.interpolate(other_h, size=output_size, mode="nearest")
+
+ if T > 1:
+ hidden_states = torch.cat((first_h, other_h), dim=2)
+ else:
+ hidden_states = first_h
+ else:
+ hidden_states = F.interpolate(hidden_states, scale_factor=self.upsample_factor, mode="nearest")
+
+ if dtype == torch.bfloat16:
+ hidden_states = hidden_states.to(dtype)
+
+ if self.use_conv:
+ if self.name == "conv":
+ hidden_states = self.conv(hidden_states)
+ else:
+ hidden_states = self.Conv2d_0(hidden_states)
+
+ return hidden_states
+
+class DownsampleCausal3D(nn.Module):
+ """A 3D downsampling layer with an optional convolution.
+
+ Parameters:
+ channels (`int`):
+ number of channels in the inputs and outputs.
+ use_conv (`bool`, default `False`):
+ option to use a convolution.
+ out_channels (`int`, optional):
+ number of output channels. Defaults to `channels`.
+ padding (`int`, default `1`):
+ padding for the convolution.
+ name (`str`, default `conv`):
+ name of the downsampling 3D layer.
+ """
+
+ def __init__(
+ self,
+ channels: int,
+ use_conv: bool = False,
+ out_channels: Optional[int] = None,
+ padding: int = 1,
+ name: str = "conv",
+ kernel_size=3,
+ norm_type=None,
+ eps=None,
+ elementwise_affine=None,
+ bias=True,
+ stride=2,
+ disable_causal=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.padding = padding
+ stride = stride
+ self.name = name
+
+ if norm_type == "ln_norm":
+ self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
+ elif norm_type == "rms_norm":
+ self.norm = RMSNorm(channels, eps, elementwise_affine)
+ elif norm_type is None:
+ self.norm = None
+ else:
+ raise ValueError(f"unknown norm_type: {norm_type}")
+
+ if use_conv:
+ conv = CausalConv3d(
+ self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, disable_causal=disable_causal, bias=bias
+ )
+ else:
+ raise NotImplementedError
+ if name == "conv":
+ self.Conv2d_0 = conv
+ self.conv = conv
+ elif name == "Conv2d_0":
+ self.conv = conv
+ else:
+ self.conv = conv
+
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+ assert hidden_states.shape[1] == self.channels
+
+ if self.norm is not None:
+ hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
+
+ assert hidden_states.shape[1] == self.channels
+
+ hidden_states = self.conv(hidden_states)
+
+ return hidden_states
+
+class ResnetBlockCausal3D(nn.Module):
+ r"""
+ A Resnet block.
+
+ Parameters:
+ in_channels (`int`): The number of channels in the input.
+ out_channels (`int`, *optional*, default to be `None`):
+ The number of output channels for the first conv2d layer. If None, same as `in_channels`.
+ dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
+ temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
+ groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
+ groups_out (`int`, *optional*, default to None):
+ The number of groups to use for the second normalization layer. if set to None, same as `groups`.
+ eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
+ non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
+ time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
+ By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
+ "ada_group" for a stronger conditioning with scale and shift.
+ kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
+ [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
+ output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
+ use_in_shortcut (`bool`, *optional*, default to `True`):
+ If `True`, add a 1x1 nn.conv2d layer for skip-connection.
+ up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
+ down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
+ conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
+ `conv_shortcut` output.
+ conv_3d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
+ If None, same as `out_channels`.
+ """
+
+ def __init__(
+ self,
+ *,
+ in_channels: int,
+ out_channels: Optional[int] = None,
+ conv_shortcut: bool = False,
+ dropout: float = 0.0,
+ temb_channels: int = 512,
+ groups: int = 32,
+ groups_out: Optional[int] = None,
+ pre_norm: bool = True,
+ eps: float = 1e-6,
+ non_linearity: str = "swish",
+ skip_time_act: bool = False,
+ time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial
+ kernel: Optional[torch.FloatTensor] = None,
+ output_scale_factor: float = 1.0,
+ use_in_shortcut: Optional[bool] = None,
+ up: bool = False,
+ down: bool = False,
+ conv_shortcut_bias: bool = True,
+ conv_3d_out_channels: Optional[int] = None,
+ disable_causal: bool = False,
+ ):
+ super().__init__()
+ self.pre_norm = pre_norm
+ self.pre_norm = True
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+ self.up = up
+ self.down = down
+ self.output_scale_factor = output_scale_factor
+ self.time_embedding_norm = time_embedding_norm
+ self.skip_time_act = skip_time_act
+
+ linear_cls = nn.Linear
+
+ if groups_out is None:
+ groups_out = groups
+
+ if self.time_embedding_norm == "ada_group":
+ self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
+ elif self.time_embedding_norm == "spatial":
+ self.norm1 = SpatialNorm(in_channels, temb_channels)
+ else:
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
+
+ self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1, disable_causal=disable_causal)
+
+ if temb_channels is not None:
+ if self.time_embedding_norm == "default":
+ self.time_emb_proj = linear_cls(temb_channels, out_channels)
+ elif self.time_embedding_norm == "scale_shift":
+ self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels)
+ elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
+ self.time_emb_proj = None
+ else:
+ raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
+ else:
+ self.time_emb_proj = None
+
+ if self.time_embedding_norm == "ada_group":
+ self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
+ elif self.time_embedding_norm == "spatial":
+ self.norm2 = SpatialNorm(out_channels, temb_channels)
+ else:
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
+
+ self.dropout = torch.nn.Dropout(dropout)
+ conv_3d_out_channels = conv_3d_out_channels or out_channels
+ self.conv2 = CausalConv3d(out_channels, conv_3d_out_channels, kernel_size=3, stride=1, disable_causal=disable_causal)
+
+ self.nonlinearity = get_activation(non_linearity)
+
+ self.upsample = self.downsample = None
+ if self.up:
+ self.upsample = UpsampleCausal3D(in_channels, use_conv=False, disable_causal=disable_causal)
+ elif self.down:
+ self.downsample = DownsampleCausal3D(in_channels, use_conv=False, disable_causal=disable_causal, name="op")
+
+ self.use_in_shortcut = self.in_channels != conv_3d_out_channels if use_in_shortcut is None else use_in_shortcut
+
+ self.conv_shortcut = None
+ if self.use_in_shortcut:
+ self.conv_shortcut = CausalConv3d(
+ in_channels,
+ conv_3d_out_channels,
+ kernel_size=1,
+ stride=1,
+ disable_causal=disable_causal,
+ bias=conv_shortcut_bias,
+ )
+
+ def forward(
+ self,
+ input_tensor: torch.FloatTensor,
+ temb: torch.FloatTensor,
+ scale: float = 1.0,
+ ) -> torch.FloatTensor:
+ hidden_states = input_tensor
+
+ if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
+ hidden_states = self.norm1(hidden_states, temb)
+ else:
+ hidden_states = self.norm1(hidden_states)
+
+ hidden_states = self.nonlinearity(hidden_states)
+
+ if self.upsample is not None:
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
+ if hidden_states.shape[0] >= 64:
+ input_tensor = input_tensor.contiguous()
+ hidden_states = hidden_states.contiguous()
+ input_tensor = (
+ self.upsample(input_tensor, scale=scale)
+ )
+ hidden_states = (
+ self.upsample(hidden_states, scale=scale)
+ )
+ elif self.downsample is not None:
+ input_tensor = (
+ self.downsample(input_tensor, scale=scale)
+ )
+ hidden_states = (
+ self.downsample(hidden_states, scale=scale)
+ )
+
+ hidden_states = self.conv1(hidden_states)
+
+ if self.time_emb_proj is not None:
+ if not self.skip_time_act:
+ temb = self.nonlinearity(temb)
+ temb = (
+ self.time_emb_proj(temb, scale)[:, :, None, None]
+ )
+
+ if temb is not None and self.time_embedding_norm == "default":
+ hidden_states = hidden_states + temb
+
+ if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
+ hidden_states = self.norm2(hidden_states, temb)
+ else:
+ hidden_states = self.norm2(hidden_states)
+
+ if temb is not None and self.time_embedding_norm == "scale_shift":
+ scale, shift = torch.chunk(temb, 2, dim=1)
+ hidden_states = hidden_states * (1 + scale) + shift
+
+ hidden_states = self.nonlinearity(hidden_states)
+
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.conv2(hidden_states)
+
+ if self.conv_shortcut is not None:
+ input_tensor = (
+ self.conv_shortcut(input_tensor)
+ )
+
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
+
+ return output_tensor
+
+def get_down_block3d(
+ down_block_type: str,
+ num_layers: int,
+ in_channels: int,
+ out_channels: int,
+ temb_channels: int,
+ add_downsample: bool,
+ downsample_stride: int,
+ resnet_eps: float,
+ resnet_act_fn: str,
+ transformer_layers_per_block: int = 1,
+ num_attention_heads: Optional[int] = None,
+ resnet_groups: Optional[int] = None,
+ cross_attention_dim: Optional[int] = None,
+ downsample_padding: Optional[int] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ attention_type: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: float = 1.0,
+ cross_attention_norm: Optional[str] = None,
+ attention_head_dim: Optional[int] = None,
+ downsample_type: Optional[str] = None,
+ dropout: float = 0.0,
+ disable_causal: bool = False,
+):
+ # If attn head dim is not defined, we default it to the number of heads
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+ )
+ attention_head_dim = num_attention_heads
+
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
+ if down_block_type == "DownEncoderBlockCausal3D":
+ return DownEncoderBlockCausal3D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ dropout=dropout,
+ add_downsample=add_downsample,
+ downsample_stride=downsample_stride,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ downsample_padding=downsample_padding,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ disable_causal=disable_causal,
+ )
+ raise ValueError(f"{down_block_type} does not exist.")
+
+def get_up_block3d(
+ up_block_type: str,
+ num_layers: int,
+ in_channels: int,
+ out_channels: int,
+ prev_output_channel: int,
+ temb_channels: int,
+ add_upsample: bool,
+ upsample_scale_factor: Tuple,
+ resnet_eps: float,
+ resnet_act_fn: str,
+ resolution_idx: Optional[int] = None,
+ transformer_layers_per_block: int = 1,
+ num_attention_heads: Optional[int] = None,
+ resnet_groups: Optional[int] = None,
+ cross_attention_dim: Optional[int] = None,
+ dual_cross_attention: bool = False,
+ use_linear_projection: bool = False,
+ only_cross_attention: bool = False,
+ upcast_attention: bool = False,
+ resnet_time_scale_shift: str = "default",
+ attention_type: str = "default",
+ resnet_skip_time_act: bool = False,
+ resnet_out_scale_factor: float = 1.0,
+ cross_attention_norm: Optional[str] = None,
+ attention_head_dim: Optional[int] = None,
+ upsample_type: Optional[str] = None,
+ dropout: float = 0.0,
+ disable_causal: bool = False,
+) -> nn.Module:
+ # If attn head dim is not defined, we default it to the number of heads
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
+ )
+ attention_head_dim = num_attention_heads
+
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
+ if up_block_type == "UpDecoderBlockCausal3D":
+ return UpDecoderBlockCausal3D(
+ num_layers=num_layers,
+ in_channels=in_channels,
+ out_channels=out_channels,
+ resolution_idx=resolution_idx,
+ dropout=dropout,
+ add_upsample=add_upsample,
+ upsample_scale_factor=upsample_scale_factor,
+ resnet_eps=resnet_eps,
+ resnet_act_fn=resnet_act_fn,
+ resnet_groups=resnet_groups,
+ resnet_time_scale_shift=resnet_time_scale_shift,
+ temb_channels=temb_channels,
+ disable_causal=disable_causal,
+ )
+ raise ValueError(f"{up_block_type} does not exist.")
+
+
+class UNetMidBlockCausal3D(nn.Module):
+ """
+ A 3D UNet mid-block [`UNetMidBlockCausal3D`] with multiple residual blocks and optional attention blocks.
+
+ Args:
+ in_channels (`int`): The number of input channels.
+ temb_channels (`int`): The number of temporal embedding channels.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
+ num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
+ resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
+ resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
+ The type of normalization to apply to the time embeddings. This can help to improve the performance of the
+ model on tasks with long-range temporal dependencies.
+ resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
+ resnet_groups (`int`, *optional*, defaults to 32):
+ The number of groups to use in the group normalization layers of the resnet blocks.
+ attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
+ resnet_pre_norm (`bool`, *optional*, defaults to `True`):
+ Whether to use pre-normalization for the resnet blocks.
+ add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
+ attention_head_dim (`int`, *optional*, defaults to 1):
+ Dimension of a single attention head. The number of attention heads is determined based on this value and
+ the number of input channels.
+ output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
+
+ Returns:
+ `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
+ in_channels, height, width)`.
+
+ """
+
+ def __init__(
+ self,
+ in_channels: int,
+ temb_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default", # default, spatial
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ attn_groups: Optional[int] = None,
+ resnet_pre_norm: bool = True,
+ add_attention: bool = True,
+ attention_head_dim: int = 1,
+ output_scale_factor: float = 1.0,
+ disable_causal: bool = False,
+ causal_attention: bool = False,
+ ):
+ super().__init__()
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
+ self.add_attention = add_attention
+ self.causal_attention = causal_attention
+
+ if attn_groups is None:
+ attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None
+
+ # there is always at least one resnet
+ resnets = [
+ ResnetBlockCausal3D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ disable_causal=disable_causal,
+ )
+ ]
+ attentions = []
+
+ if attention_head_dim is None:
+ logger.warn(
+ f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
+ )
+ attention_head_dim = in_channels
+
+ for _ in range(num_layers):
+ if self.add_attention:
+ #assert False, "Not implemented yet"
+ attentions.append(
+ Attention(
+ in_channels,
+ heads=in_channels // attention_head_dim,
+ dim_head=attention_head_dim,
+ rescale_output_factor=output_scale_factor,
+ eps=resnet_eps,
+ norm_num_groups=attn_groups,
+ spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
+ residual_connection=True,
+ bias=True,
+ upcast_softmax=True,
+ _from_deprecated_attn_block=True,
+ )
+ )
+ else:
+ attentions.append(None)
+
+ resnets.append(
+ ResnetBlockCausal3D(
+ in_channels=in_channels,
+ out_channels=in_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ disable_causal=disable_causal,
+ )
+ )
+
+ self.attentions = nn.ModuleList(attentions)
+ self.resnets = nn.ModuleList(resnets)
+
+ def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
+ hidden_states = self.resnets[0](hidden_states, temb)
+ for attn, resnet in zip(self.attentions, self.resnets[1:]):
+ if attn is not None:
+ B, C, T, H, W = hidden_states.shape
+ hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c")
+ if self.causal_attention:
+ attention_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B)
+ else:
+ attention_mask = None
+ hidden_states = attn(hidden_states, temb=temb, attention_mask=attention_mask)
+ hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W)
+ hidden_states = resnet(hidden_states, temb)
+
+ return hidden_states
+
+
+class DownEncoderBlockCausal3D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default",
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_downsample: bool = True,
+ downsample_stride: int = 2,
+ downsample_padding: int = 1,
+ disable_causal: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ in_channels = in_channels if i == 0 else out_channels
+ resnets.append(
+ ResnetBlockCausal3D(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ temb_channels=None,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ disable_causal=disable_causal,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_downsample:
+ self.downsamplers = nn.ModuleList(
+ [
+ DownsampleCausal3D(
+ out_channels,
+ use_conv=True,
+ out_channels=out_channels,
+ padding=downsample_padding,
+ name="op",
+ stride=downsample_stride,
+ disable_causal=disable_causal,
+ )
+ ]
+ )
+ else:
+ self.downsamplers = None
+
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=None, scale=scale)
+
+ if self.downsamplers is not None:
+ for downsampler in self.downsamplers:
+ hidden_states = downsampler(hidden_states, scale)
+
+ return hidden_states
+
+
+class UpDecoderBlockCausal3D(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ out_channels: int,
+ resolution_idx: Optional[int] = None,
+ dropout: float = 0.0,
+ num_layers: int = 1,
+ resnet_eps: float = 1e-6,
+ resnet_time_scale_shift: str = "default", # default, spatial
+ resnet_act_fn: str = "swish",
+ resnet_groups: int = 32,
+ resnet_pre_norm: bool = True,
+ output_scale_factor: float = 1.0,
+ add_upsample: bool = True,
+ upsample_scale_factor = (2, 2, 2),
+ temb_channels: Optional[int] = None,
+ disable_causal: bool = False,
+ ):
+ super().__init__()
+ resnets = []
+
+ for i in range(num_layers):
+ input_channels = in_channels if i == 0 else out_channels
+
+ resnets.append(
+ ResnetBlockCausal3D(
+ in_channels=input_channels,
+ out_channels=out_channels,
+ temb_channels=temb_channels,
+ eps=resnet_eps,
+ groups=resnet_groups,
+ dropout=dropout,
+ time_embedding_norm=resnet_time_scale_shift,
+ non_linearity=resnet_act_fn,
+ output_scale_factor=output_scale_factor,
+ pre_norm=resnet_pre_norm,
+ disable_causal=disable_causal,
+ )
+ )
+
+ self.resnets = nn.ModuleList(resnets)
+
+ if add_upsample:
+ self.upsamplers = nn.ModuleList(
+ [
+ UpsampleCausal3D(
+ out_channels,
+ use_conv=True,
+ out_channels=out_channels,
+ upsample_factor=upsample_scale_factor,
+ disable_causal=disable_causal
+ )
+ ]
+ )
+ else:
+ self.upsamplers = None
+
+ self.resolution_idx = resolution_idx
+
+ def forward(
+ self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0
+ ) -> torch.FloatTensor:
+ for resnet in self.resnets:
+ hidden_states = resnet(hidden_states, temb=temb, scale=scale)
+
+ if self.upsamplers is not None:
+ for upsampler in self.upsamplers:
+ hidden_states = upsampler(hidden_states)
+
+ return hidden_states
+
diff --git a/hymm_sp/vae/vae.py b/hymm_sp/vae/vae.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7198a30bb3b5aaa283579cdf4e287f2906de2e8
--- /dev/null
+++ b/hymm_sp/vae/vae.py
@@ -0,0 +1,427 @@
+from dataclasses import dataclass
+from typing import Optional, Tuple
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from diffusers.utils import BaseOutput, is_torch_version
+from diffusers.utils.torch_utils import randn_tensor
+from diffusers.models.attention_processor import SpatialNorm
+from .unet_causal_3d_blocks import (
+ CausalConv3d,
+ UNetMidBlockCausal3D,
+ get_down_block3d,
+ get_up_block3d,
+)
+
+@dataclass
+class DecoderOutput(BaseOutput):
+ r"""
+ Output of decoding method.
+
+ Args:
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ The decoded output sample from the last layer of the model.
+ """
+
+ sample: torch.FloatTensor
+
+
+class EncoderCausal3D(nn.Module):
+ r"""
+ The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
+
+ Args:
+ in_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ out_channels (`int`, *optional*, defaults to 3):
+ The number of output channels.
+ down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
+ The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
+ options.
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
+ The number of output channels for each block.
+ layers_per_block (`int`, *optional*, defaults to 2):
+ The number of layers per block.
+ norm_num_groups (`int`, *optional*, defaults to 32):
+ The number of groups for normalization.
+ act_fn (`str`, *optional*, defaults to `"silu"`):
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
+ double_z (`bool`, *optional*, defaults to `True`):
+ Whether to double the number of output channels for the last block.
+ """
+
+ def __init__(
+ self,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
+ block_out_channels: Tuple[int, ...] = (64,),
+ layers_per_block: int = 2,
+ norm_num_groups: int = 32,
+ act_fn: str = "silu",
+ double_z: bool = True,
+ mid_block_add_attention=True,
+ time_compression_ratio: int = 4,
+ spatial_compression_ratio: int = 8,
+ disable_causal: bool = False,
+ mid_block_causal_attn: bool = False,
+ ):
+ super().__init__()
+ self.layers_per_block = layers_per_block
+
+ self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1, disable_causal=disable_causal)
+ self.mid_block = None
+ self.down_blocks = nn.ModuleList([])
+
+ # down
+ output_channel = block_out_channels[0]
+ for i, down_block_type in enumerate(down_block_types):
+ input_channel = output_channel
+ output_channel = block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+ num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
+ num_time_downsample_layers = int(np.log2(time_compression_ratio))
+
+ if time_compression_ratio == 4:
+ add_spatial_downsample = bool(i < num_spatial_downsample_layers)
+ add_time_downsample = bool(i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block)
+ elif time_compression_ratio == 8:
+ add_spatial_downsample = bool(i < num_spatial_downsample_layers)
+ add_time_downsample = bool(i < num_time_downsample_layers)
+ else:
+ raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}")
+
+ downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
+ downsample_stride_T = (2, ) if add_time_downsample else (1, )
+ downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
+ down_block = get_down_block3d(
+ down_block_type,
+ num_layers=self.layers_per_block,
+ in_channels=input_channel,
+ out_channels=output_channel,
+ add_downsample=bool(add_spatial_downsample or add_time_downsample),
+ downsample_stride=downsample_stride,
+ resnet_eps=1e-6,
+ downsample_padding=0,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ attention_head_dim=output_channel,
+ temb_channels=None,
+ disable_causal=disable_causal,
+ )
+ self.down_blocks.append(down_block)
+
+ # mid
+ self.mid_block = UNetMidBlockCausal3D(
+ in_channels=block_out_channels[-1],
+ resnet_eps=1e-6,
+ resnet_act_fn=act_fn,
+ output_scale_factor=1,
+ resnet_time_scale_shift="default",
+ attention_head_dim=block_out_channels[-1],
+ resnet_groups=norm_num_groups,
+ temb_channels=None,
+ add_attention=mid_block_add_attention,
+ disable_causal=disable_causal,
+ causal_attention=mid_block_causal_attn,
+ )
+
+ # out
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
+ self.conv_act = nn.SiLU()
+
+ conv_out_channels = 2 * out_channels if double_z else out_channels
+ self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3, disable_causal=disable_causal)
+
+ self.gradient_checkpointing = False
+
+ def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
+ r"""The forward method of the `EncoderCausal3D` class."""
+ assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
+
+ sample = self.conv_in(sample)
+
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ # down
+ if is_torch_version(">=", "1.11.0"):
+ for down_block in self.down_blocks:
+ sample = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(down_block), sample, use_reentrant=False
+ )
+ # middle
+ sample = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(self.mid_block), sample, use_reentrant=False
+ )
+ else:
+ for down_block in self.down_blocks:
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
+ # middle
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
+
+ else:
+ # down
+ for down_block in self.down_blocks:
+ sample = down_block(sample)
+
+ # middle
+ sample = self.mid_block(sample)
+
+ # post-process
+ sample = self.conv_norm_out(sample)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ return sample
+
+
+class DecoderCausal3D(nn.Module):
+ r"""
+ The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
+
+ Args:
+ in_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ out_channels (`int`, *optional*, defaults to 3):
+ The number of output channels.
+ up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
+ The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
+ The number of output channels for each block.
+ layers_per_block (`int`, *optional*, defaults to 2):
+ The number of layers per block.
+ norm_num_groups (`int`, *optional*, defaults to 32):
+ The number of groups for normalization.
+ act_fn (`str`, *optional*, defaults to `"silu"`):
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
+ norm_type (`str`, *optional*, defaults to `"group"`):
+ The normalization type to use. Can be either `"group"` or `"spatial"`.
+ """
+
+ def __init__(
+ self,
+ in_channels: int = 3,
+ out_channels: int = 3,
+ up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
+ block_out_channels: Tuple[int, ...] = (64,),
+ layers_per_block: int = 2,
+ norm_num_groups: int = 32,
+ act_fn: str = "silu",
+ norm_type: str = "group", # group, spatial
+ mid_block_add_attention=True,
+ time_compression_ratio: int = 4,
+ spatial_compression_ratio: int = 8,
+ disable_causal: bool = False,
+ mid_block_causal_attn: bool = False,
+ ):
+ super().__init__()
+ self.layers_per_block = layers_per_block
+
+ self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, disable_causal=disable_causal)
+ self.mid_block = None
+ self.up_blocks = nn.ModuleList([])
+
+ temb_channels = in_channels if norm_type == "spatial" else None
+
+ # mid
+ self.mid_block = UNetMidBlockCausal3D(
+ in_channels=block_out_channels[-1],
+ resnet_eps=1e-6,
+ resnet_act_fn=act_fn,
+ output_scale_factor=1,
+ resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
+ attention_head_dim=block_out_channels[-1],
+ resnet_groups=norm_num_groups,
+ temb_channels=temb_channels,
+ add_attention=mid_block_add_attention,
+ disable_causal=disable_causal,
+ causal_attention=mid_block_causal_attn,
+ )
+
+ # up
+ reversed_block_out_channels = list(reversed(block_out_channels))
+ output_channel = reversed_block_out_channels[0]
+ for i, up_block_type in enumerate(up_block_types):
+ prev_output_channel = output_channel
+ output_channel = reversed_block_out_channels[i]
+ is_final_block = i == len(block_out_channels) - 1
+ num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
+ num_time_upsample_layers = int(np.log2(time_compression_ratio))
+
+ if time_compression_ratio == 4:
+ add_spatial_upsample = bool(i < num_spatial_upsample_layers)
+ add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block)
+ elif time_compression_ratio == 8:
+ add_spatial_upsample = bool(i >= len(block_out_channels) - num_spatial_upsample_layers)
+ add_time_upsample = bool(i >= len(block_out_channels) - num_time_upsample_layers)
+ else:
+ raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}")
+
+ upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
+ upsample_scale_factor_T = (2, ) if add_time_upsample else (1, )
+ upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
+ up_block = get_up_block3d(
+ up_block_type,
+ num_layers=self.layers_per_block + 1,
+ in_channels=prev_output_channel,
+ out_channels=output_channel,
+ prev_output_channel=None,
+ add_upsample=bool(add_spatial_upsample or add_time_upsample),
+ upsample_scale_factor=upsample_scale_factor,
+ resnet_eps=1e-6,
+ resnet_act_fn=act_fn,
+ resnet_groups=norm_num_groups,
+ attention_head_dim=output_channel,
+ temb_channels=temb_channels,
+ resnet_time_scale_shift=norm_type,
+ disable_causal=disable_causal,
+ )
+ self.up_blocks.append(up_block)
+ prev_output_channel = output_channel
+
+ # out
+ if norm_type == "spatial":
+ self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
+ else:
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
+ self.conv_act = nn.SiLU()
+ self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3, disable_causal=disable_causal)
+
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ sample: torch.FloatTensor,
+ latent_embeds: Optional[torch.FloatTensor] = None,
+ ) -> torch.FloatTensor:
+ r"""The forward method of the `DecoderCausal3D` class."""
+ assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
+
+ sample = self.conv_in(sample)
+
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
+ if self.training and self.gradient_checkpointing:
+
+ def create_custom_forward(module):
+ def custom_forward(*inputs):
+ return module(*inputs)
+
+ return custom_forward
+
+ if is_torch_version(">=", "1.11.0"):
+ # middle
+ sample = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(self.mid_block),
+ sample,
+ latent_embeds,
+ use_reentrant=False,
+ )
+ sample = sample.to(upscale_dtype)
+
+ # up
+ for up_block in self.up_blocks:
+ sample = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(up_block),
+ sample,
+ latent_embeds,
+ use_reentrant=False,
+ )
+ else:
+ # middle
+ sample = torch.utils.checkpoint.checkpoint(
+ create_custom_forward(self.mid_block), sample, latent_embeds
+ )
+ sample = sample.to(upscale_dtype)
+
+ # up
+ for up_block in self.up_blocks:
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
+ else:
+ # middle
+ sample = self.mid_block(sample, latent_embeds)
+ sample = sample.to(upscale_dtype)
+
+ # up
+ for up_block in self.up_blocks:
+ sample = up_block(sample, latent_embeds)
+
+ # post-process
+ if latent_embeds is None:
+ sample = self.conv_norm_out(sample)
+ else:
+ sample = self.conv_norm_out(sample, latent_embeds)
+ sample = self.conv_act(sample)
+ sample = self.conv_out(sample)
+
+ return sample
+
+
+class DiagonalGaussianDistribution(object):
+ def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
+ if parameters.ndim == 3:
+ dim = 2 # (B, L, C)
+ elif parameters.ndim == 5 or parameters.ndim == 4:
+ dim = 1 # (B, C, T, H ,W) / (B, C, H, W)
+ else:
+ raise NotImplementedError
+ self.parameters = parameters
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+ self.deterministic = deterministic
+ self.std = torch.exp(0.5 * self.logvar)
+ self.var = torch.exp(self.logvar)
+ if self.deterministic:
+ self.var = self.std = torch.zeros_like(
+ self.mean, device=self.parameters.device, dtype=self.parameters.dtype
+ )
+
+ def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
+ # make sure sample is on the same device as the parameters and has same dtype
+ sample = randn_tensor(
+ self.mean.shape,
+ generator=generator,
+ device=self.parameters.device,
+ dtype=self.parameters.dtype,
+ )
+ x = self.mean + self.std * sample
+ return x
+
+ def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
+ if self.deterministic:
+ return torch.Tensor([0.0])
+ else:
+ reduce_dim = list(range(1, self.mean.ndim))
+ if other is None:
+ return 0.5 * torch.sum(
+ torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
+ dim=reduce_dim,
+ )
+ else:
+ return 0.5 * torch.sum(
+ torch.pow(self.mean - other.mean, 2) / other.var
+ + self.var / other.var
+ - 1.0
+ - self.logvar
+ + other.logvar,
+ dim=reduce_dim,
+ )
+
+ def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
+ if self.deterministic:
+ return torch.Tensor([0.0])
+ logtwopi = np.log(2.0 * np.pi)
+ return 0.5 * torch.sum(
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+ dim=dims,
+ )
+
+ def mode(self) -> torch.Tensor:
+ return self.mean
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cd728cd8949a93728911e047e5fade18185c8c0d
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,19 @@
+opencv-python==4.9.0.80
+diffusers==0.33.0
+transformers==4.45.1
+accelerate==1.1.1
+pandas==2.0.3
+numpy==1.24.4
+einops==0.7.0
+tqdm==4.66.2
+loguru==0.7.2
+imageio==2.34.0
+imageio-ffmpeg==0.5.1
+safetensors==0.4.3
+gradio==4.42.0
+fastapi==0.115.12
+uvicorn==0.34.2
+decord==0.6.0
+librosa==0.11.0
+scikit-video==1.1.11
+ffmpeg
\ No newline at end of file
diff --git a/scripts/run_gradio.sh b/scripts/run_gradio.sh
new file mode 100644
index 0000000000000000000000000000000000000000..58d86c7b79d35f65c0a547b35a0efe8dfef52b28
--- /dev/null
+++ b/scripts/run_gradio.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+JOBS_DIR=$(dirname $(dirname "$0"))
+export PYTHONPATH=./
+
+export MODEL_BASE=./weights
+
+checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt
+
+
+torchrun --nnodes=1 --nproc_per_node=8 --master_port 29605 hymm_gradio/flask_audio.py \
+ --input 'assets/test.csv' \
+ --ckpt ${checkpoint_path} \
+ --sample-n-frames 129 \
+ --seed 128 \
+ --image-size 704 \
+ --cfg-scale 7.5 \
+ --infer-steps 50 \
+ --use-deepcache 1 \
+ --flow-shift-eval-video 5.0 &
+
+
+python3 hymm_gradio/gradio_audio.py
diff --git a/scripts/run_sample_batch_sp.sh b/scripts/run_sample_batch_sp.sh
new file mode 100644
index 0000000000000000000000000000000000000000..72fe93c0eb1d57ab77ca9a358c1dd2aafaf50c41
--- /dev/null
+++ b/scripts/run_sample_batch_sp.sh
@@ -0,0 +1,20 @@
+#!/bin/bash
+JOBS_DIR=$(dirname $(dirname "$0"))
+export PYTHONPATH=./
+
+export MODEL_BASE=./weights
+OUTPUT_BASEPATH=./results
+checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt
+
+
+torchrun --nnodes=1 --nproc_per_node=8 --master_port 29605 hymm_sp/sample_batch.py \
+ --input 'assets/test.csv' \
+ --ckpt ${checkpoint_path} \
+ --sample-n-frames 129 \
+ --seed 128 \
+ --image-size 704 \
+ --cfg-scale 7.5 \
+ --infer-steps 50 \
+ --use-deepcache 1 \
+ --flow-shift-eval-video 5.0 \
+ --save-path ${OUTPUT_BASEPATH}
diff --git a/scripts/run_single_audio.sh b/scripts/run_single_audio.sh
new file mode 100644
index 0000000000000000000000000000000000000000..08f8273d21427f29afbc67162ca71e3361678d41
--- /dev/null
+++ b/scripts/run_single_audio.sh
@@ -0,0 +1,25 @@
+#!/bin/bash
+JOBS_DIR=$(dirname $(dirname "$0"))
+export PYTHONPATH=./
+
+export MODEL_BASE=./weights
+OUTPUT_BASEPATH=./results-single
+
+# checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt
+checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt
+
+
+export DISABLE_SP=1
+CUDA_VISIBLE_DEVICES=0 python3 hymm_sp/sample_gpu_poor.py \
+ --input 'assets/test.csv' \
+ --ckpt ${checkpoint_path} \
+ --sample-n-frames 129 \
+ --seed 128 \
+ --image-size 704 \
+ --cfg-scale 7.5 \
+ --infer-steps 50 \
+ --use-deepcache 1 \
+ --flow-shift-eval-video 5.0 \
+ --save-path ${OUTPUT_BASEPATH} \
+ --use-fp8 \
+ --infer-min
diff --git a/scripts/run_single_poor.sh b/scripts/run_single_poor.sh
new file mode 100644
index 0000000000000000000000000000000000000000..ef94046e7c755f8bba4205ba81b82ce2f41e237d
--- /dev/null
+++ b/scripts/run_single_poor.sh
@@ -0,0 +1,24 @@
+#!/bin/bash
+JOBS_DIR=$(dirname $(dirname "$0"))
+export PYTHONPATH=./
+
+export MODEL_BASE=./weights
+OUTPUT_BASEPATH=./results-poor
+
+checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt
+
+export CPU_OFFLOAD=1
+CUDA_VISIBLE_DEVICES=0 python3 hymm_sp/sample_gpu_poor.py \
+ --input 'assets/test.csv' \
+ --ckpt ${checkpoint_path} \
+ --sample-n-frames 129 \
+ --seed 128 \
+ --image-size 704 \
+ --cfg-scale 7.5 \
+ --infer-steps 50 \
+ --use-deepcache 1 \
+ --flow-shift-eval-video 5.0 \
+ --save-path ${OUTPUT_BASEPATH} \
+ --use-fp8 \
+ --cpu-offload \
+ --infer-min
diff --git a/weights/README.md b/weights/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5864c2f44ef6313636db0027b854db029cc39467
--- /dev/null
+++ b/weights/README.md
@@ -0,0 +1,44 @@
+# Download Pretrained Models
+
+All models are stored in `HunyuanVideo-Avatar/weights` by default, and the file structure is as follows
+```shell
+HunyuanVideo-Avatar
+ ├──weights
+ │ ├──ckpts
+ │ │ ├──README.md
+ │ │ ├──hunyuan-video-t2v-720p
+ │ │ │ ├──transformers
+ │ │ │ │ ├──mp_rank_00_model_states.pt
+ │ │ │ │ ├──mp_rank_00_model_states_fp8.pt
+ │ │ │ │ ├──mp_rank_00_model_states_fp8_map.pt
+ │ │ │ ├──vae
+ │ │ │ │ ├──pytorch_model.pt
+ │ │ │ │ ├──config.json
+ │ │ ├──llava_llama_image
+ │ │ │ ├──model-00001-of-00004.safatensors
+ │ │ │ ├──model-00002-of-00004.safatensors
+ │ │ │ ├──model-00003-of-00004.safatensors
+ │ │ │ ├──model-00004-of-00004.safatensors
+ │ │ │ ├──...
+ │ │ ├──text_encoder_2
+ │ │ ├──whisper-tiny
+ │ │ ├──det_align
+ │ │ ├──...
+```
+
+## Download HunyuanVideo-Avatar model
+To download the HunyuanCustom model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)
+
+```shell
+python -m pip install "huggingface_hub[cli]"
+```
+
+Then download the model using the following commands:
+
+```shell
+# Switch to the directory named 'HunyuanVideo-Avatar/weights'
+cd HunyuanVideo-Avatar/weights
+# Use the huggingface-cli tool to download HunyuanVideo-Avatar model in HunyuanVideo-Avatar/weights dir.
+# The download time may vary from 10 minutes to 1 hour depending on network conditions.
+huggingface-cli download tencent/HunyuanVideo-Avatar --local-dir ./
+```