import os import cv2 import torch import numpy as np import imageio import torchvision from einops import rearrange def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8, quality=8): videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = torch.clamp(x,0,1) x = (x * 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, fps=fps, quality=quality) def pad_image(crop_img, size, color=(255, 255, 255), resize_ratio=1): crop_h, crop_w = crop_img.shape[:2] target_w, target_h = size scale_h, scale_w = target_h / crop_h, target_w / crop_w if scale_w > scale_h: resize_h = int(target_h*resize_ratio) resize_w = int(crop_w / crop_h * resize_h) else: resize_w = int(target_w*resize_ratio) resize_h = int(crop_h / crop_w * resize_w) crop_img = cv2.resize(crop_img, (resize_w, resize_h)) pad_left = (target_w - resize_w) // 2 pad_top = (target_h - resize_h) // 2 pad_right = target_w - resize_w - pad_left pad_bottom = target_h - resize_h - pad_top crop_img = cv2.copyMakeBorder(crop_img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=color) return crop_img