import torch from pathlib import Path from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D from ..constants import VAE_PATH, PRECISION_TO_TYPE def load_vae(vae_type, vae_precision=None, sample_size=None, vae_path=None, logger=None, device=None ): if vae_path is None: vae_path = VAE_PATH[vae_type] vae_compress_spec, _, _ = vae_type.split("-") length = len(vae_compress_spec) if length == 3: if logger is not None: logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}") config = AutoencoderKLCausal3D.load_config(vae_path) if sample_size: vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size) else: vae = AutoencoderKLCausal3D.from_config(config) ckpt = torch.load(Path(vae_path) / "pytorch_model.pt", map_location=vae.device) if "state_dict" in ckpt: ckpt = ckpt["state_dict"] # vae_ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")} vae_ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items()} vae.load_state_dict(vae_ckpt) spatial_compression_ratio = vae.config.spatial_compression_ratio time_compression_ratio = vae.config.time_compression_ratio else: raise ValueError(f"Invalid VAE model: {vae_type}. Must be 3D VAE in the format of '???-*'.") if vae_precision is not None: vae = vae.to(dtype=PRECISION_TO_TYPE[vae_precision]) vae.requires_grad_(False) if logger is not None: logger.info(f"VAE to dtype: {vae.dtype}") if device is not None: vae = vae.to(device) # Set vae to eval mode, even though it's dropout rate is 0. vae.eval() return vae, vae_path, spatial_compression_ratio, time_compression_ratio