import argparse from hymm_sp.constants import * import re import collections.abc def as_tuple(x): if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): return tuple(x) if x is None or isinstance(x, (int, float, str)): return (x,) else: raise ValueError(f"Unknown type {type(x)}") def parse_args(namespace=None): parser = argparse.ArgumentParser(description="Hunyuan Multimodal training/inference script") parser = add_extra_args(parser) args = parser.parse_args(namespace=namespace) args = sanity_check_args(args) return args def add_extra_args(parser: argparse.ArgumentParser): parser = add_network_args(parser) parser = add_extra_models_args(parser) parser = add_denoise_schedule_args(parser) parser = add_evaluation_args(parser) return parser def add_network_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Network") group.add_argument("--model", type=str, default="HYVideo-T/2", help="Model architecture to use. It it also used to determine the experiment directory.") group.add_argument("--latent-channels", type=str, default=None, help="Number of latent channels of DiT. If None, it will be determined by `vae`. If provided, " "it still needs to match the latent channels of the VAE model.") group.add_argument("--rope-theta", type=int, default=256, help="Theta used in RoPE.") return parser def add_extra_models_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Extra Models (VAE, Text Encoder, Tokenizer)") # VAE group.add_argument("--vae", type=str, default="884-16c-hy0801", help="Name of the VAE model.") group.add_argument("--vae-precision", type=str, default="fp16", help="Precision mode for the VAE model.") group.add_argument("--vae-tiling", action="store_true", default=True, help="Enable tiling for the VAE model.") group.add_argument("--text-encoder", type=str, default="llava-llama-3-8b", choices=list(TEXT_ENCODER_PATH), help="Name of the text encoder model.") group.add_argument("--text-encoder-precision", type=str, default="fp16", choices=PRECISIONS, help="Precision mode for the text encoder model.") group.add_argument("--text-states-dim", type=int, default=4096, help="Dimension of the text encoder hidden states.") group.add_argument("--text-len", type=int, default=256, help="Maximum length of the text input.") group.add_argument("--tokenizer", type=str, default="llava-llama-3-8b", choices=list(TOKENIZER_PATH), help="Name of the tokenizer model.") group.add_argument("--text-encoder-infer-mode", type=str, default="encoder", choices=["encoder", "decoder"], help="Inference mode for the text encoder model. It should match the text encoder type. T5 and " "CLIP can only work in 'encoder' mode, while Llava/GLM can work in both modes.") group.add_argument("--prompt-template-video", type=str, default='li-dit-encode-video', choices=PROMPT_TEMPLATE, help="Video prompt template for the decoder-only text encoder model.") group.add_argument("--hidden-state-skip-layer", type=int, default=2, help="Skip layer for hidden states.") group.add_argument("--apply-final-norm", action="store_true", help="Apply final normalization to the used text encoder hidden states.") # - CLIP group.add_argument("--text-encoder-2", type=str, default='clipL', choices=list(TEXT_ENCODER_PATH), help="Name of the second text encoder model.") group.add_argument("--text-encoder-precision-2", type=str, default="fp16", choices=PRECISIONS, help="Precision mode for the second text encoder model.") group.add_argument("--text-states-dim-2", type=int, default=768, help="Dimension of the second text encoder hidden states.") group.add_argument("--tokenizer-2", type=str, default='clipL', choices=list(TOKENIZER_PATH), help="Name of the second tokenizer model.") group.add_argument("--text-len-2", type=int, default=77, help="Maximum length of the second text input.") group.set_defaults(use_attention_mask=True) group.add_argument("--text-projection", type=str, default="single_refiner", choices=TEXT_PROJECTION, help="A projection layer for bridging the text encoder hidden states and the diffusion model " "conditions.") return parser def add_denoise_schedule_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Denoise schedule") group.add_argument("--flow-shift-eval-video", type=float, default=None, help="Shift factor for flow matching schedulers when using video data.") group.add_argument("--flow-reverse", action="store_true", default=True, help="If reverse, learning/sampling from t=1 -> t=0.") group.add_argument("--flow-solver", type=str, default="euler", help="Solver for flow matching.") group.add_argument("--use-linear-quadratic-schedule", action="store_true", help="Use linear quadratic schedule for flow matching." "Follow MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)") group.add_argument("--linear-schedule-end", type=int, default=25, help="End step for linear quadratic schedule for flow matching.") return parser def add_evaluation_args(parser: argparse.ArgumentParser): group = parser.add_argument_group(title="Validation Loss Evaluation") parser.add_argument("--precision", type=str, default="bf16", choices=PRECISIONS, help="Precision mode. Options: fp32, fp16, bf16. Applied to the backbone model and optimizer.") parser.add_argument("--reproduce", action="store_true", help="Enable reproducibility by setting random seeds and deterministic algorithms.") parser.add_argument("--ckpt", type=str, help="Path to the checkpoint to evaluate.") parser.add_argument("--load-key", type=str, default="module", choices=["module", "ema"], help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.") parser.add_argument("--cpu-offload", action="store_true", help="Use CPU offload for the model load.") parser.add_argument("--infer-min", action="store_true", help="infer 5s.") group.add_argument( "--use-fp8", action="store_true", help="Enable use fp8 for inference acceleration.") group.add_argument("--video-size", type=int, nargs='+', default=512, help="Video size for training. If a single value is provided, it will be used for both width " "and height. If two values are provided, they will be used for width and height " "respectively.") group.add_argument("--sample-n-frames", type=int, default=1, help="How many frames to sample from a video. if using 3d vae, the number should be 4n+1") group.add_argument("--infer-steps", type=int, default=100, help="Number of denoising steps for inference.") group.add_argument("--val-disable-autocast", action="store_true", help="Disable autocast for denoising loop and vae decoding in pipeline sampling.") group.add_argument("--num-images", type=int, default=1, help="Number of images to generate for each prompt.") group.add_argument("--seed", type=int, default=1024, help="Seed for evaluation.") group.add_argument("--save-path-suffix", type=str, default="", help="Suffix for the directory of saved samples.") group.add_argument("--pos-prompt", type=str, default='', help="Prompt for sampling during evaluation.") group.add_argument("--neg-prompt", type=str, default='', help="Negative prompt for sampling during evaluation.") group.add_argument("--image-size", type=int, default=704) group.add_argument("--pad-face-size", type=float, default=0.7, help="Pad bbox for face align.") group.add_argument("--image-path", type=str, default="", help="") group.add_argument("--save-path", type=str, default=None, help="Path to save the generated samples.") group.add_argument("--input", type=str, default=None, help="test data.") group.add_argument("--item-name", type=str, default=None, help="") group.add_argument("--cfg-scale", type=float, default=7.5, help="Classifier free guidance scale.") group.add_argument("--ip-cfg-scale", type=float, default=0, help="Classifier free guidance scale.") group.add_argument("--use-deepcache", type=int, default=1) return parser def sanity_check_args(args): # VAE channels vae_pattern = r"\d{2,3}-\d{1,2}c-\w+" if not re.match(vae_pattern, args.vae): raise ValueError( f"Invalid VAE model: {args.vae}. Must be in the format of '{vae_pattern}'." ) vae_channels = int(args.vae.split("-")[1][:-1]) if args.latent_channels is None: args.latent_channels = vae_channels if vae_channels != args.latent_channels: raise ValueError( f"Latent channels ({args.latent_channels}) must match the VAE channels ({vae_channels})." ) return args