import os import torch __all__ = [ "PROMPT_TEMPLATE", "MODEL_BASE", "PRECISION_TO_TYPE", "PRECISIONS", "VAE_PATH", "TEXT_ENCODER_PATH", "TOKENIZER_PATH", "TEXT_PROJECTION", ] # =================== Constant Values ===================== PRECISION_TO_TYPE = { 'fp32': torch.float32, 'fp16': torch.float16, 'bf16': torch.bfloat16, } PROMPT_TEMPLATE_ENCODE_VIDEO = ( "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " "1. The main content and theme of the video." "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." "4. background environment, light, style and atmosphere." "5. camera angles, movements, and transitions used in the video:<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" ) PROMPT_TEMPLATE = { "li-dit-encode-video": {"template": PROMPT_TEMPLATE_ENCODE_VIDEO, "crop_start": 95}, } # ======================= Model ====================== PRECISIONS = {"fp32", "fp16", "bf16"} # =================== Model Path ===================== MODEL_BASE = os.getenv("MODEL_BASE") MODEL_BASE=f"{MODEL_BASE}/ckpts" # 3D VAE VAE_PATH = { "884-16c-hy0801": f"{MODEL_BASE}/hunyuan-video-t2v-720p/vae", } # Text Encoder TEXT_ENCODER_PATH = { "clipL": f"{MODEL_BASE}/text_encoder_2", "llava-llama-3-8b": f"{MODEL_BASE}/llava_llama_image", } # Tokenizer TOKENIZER_PATH = { "clipL": f"{MODEL_BASE}/text_encoder_2", "llava-llama-3-8b":f"{MODEL_BASE}/llava_llama_image", } TEXT_PROJECTION = { "linear", # Default, an nn.Linear() layer "single_refiner", # Single TokenRefiner. Refer to LI-DiT }