|
import math |
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...utils.helper import to_2tuple, to_1tuple |
|
|
|
class PatchEmbed1D(nn.Module): |
|
"""1D Audio to Patch Embedding |
|
|
|
A convolution based approach to patchifying a 1D audio w/ embedding projection. |
|
|
|
Based on the impl in https://github.com/google-research/vision_transformer |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=1, |
|
in_chans=768, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
bias=True, |
|
dtype=None, |
|
device=None, |
|
): |
|
factory_kwargs = {"dtype": dtype, "device": device} |
|
super().__init__() |
|
patch_size = to_1tuple(patch_size) |
|
self.patch_size = patch_size |
|
self.flatten = flatten |
|
|
|
self.proj = nn.Conv1d( |
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, **factory_kwargs |
|
) |
|
nn.init.xavier_uniform_(self.proj.weight.view(self.proj.weight.size(0), -1)) |
|
if bias: |
|
nn.init.zeros_(self.proj.bias) |
|
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
assert ( |
|
x.shape[2] % self.patch_size[0] == 0 |
|
), f"The patch_size of {self.patch_size[0]} must be divisible by the token number ({x.shape[2]}) of x." |
|
|
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class ConditionProjection(nn.Module): |
|
""" |
|
Projects condition embeddings. Also handles dropout for classifier-free guidance. |
|
|
|
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py |
|
""" |
|
|
|
def __init__(self, in_channels, hidden_size, act_layer, dtype=None, device=None): |
|
factory_kwargs = {'dtype': dtype, 'device': device} |
|
super().__init__() |
|
self.linear_1 = nn.Linear(in_features=in_channels, out_features=hidden_size, bias=True, **factory_kwargs) |
|
self.act_1 = act_layer() |
|
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True, **factory_kwargs) |
|
|
|
def forward(self, caption): |
|
hidden_states = self.linear_1(caption) |
|
hidden_states = self.act_1(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
|
|
Args: |
|
t (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional. |
|
dim (int): the dimension of the output. |
|
max_period (int): controls the minimum frequency of the embeddings. |
|
|
|
Returns: |
|
embedding (torch.Tensor): An (N, D) Tensor of positional embeddings. |
|
|
|
.. ref_link: https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
return embedding |
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, |
|
hidden_size, |
|
act_layer, |
|
frequency_embedding_size=256, |
|
max_period=10000, |
|
out_size=None, |
|
dtype=None, |
|
device=None |
|
): |
|
factory_kwargs = {'dtype': dtype, 'device': device} |
|
super().__init__() |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.max_period = max_period |
|
if out_size is None: |
|
out_size = hidden_size |
|
|
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True, **factory_kwargs), |
|
act_layer(), |
|
nn.Linear(hidden_size, out_size, bias=True, **factory_kwargs), |
|
) |
|
nn.init.normal_(self.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.mlp[2].weight, std=0.02) |
|
|
|
def forward(self, t): |
|
t_freq = timestep_embedding(t, self.frequency_embedding_size, self.max_period).type(self.mlp[0].weight.dtype) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|