Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,81 @@
|
|
1 |
-
import
|
|
|
2 |
from PIL import Image, ImageDraw
|
|
|
|
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
-
|
6 |
|
7 |
-
#
|
8 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
|
|
|
|
|
|
|
11 |
def load_image(image_file, image_url):
|
12 |
-
"""
|
13 |
-
Load image from file or URL.
|
14 |
-
"""
|
15 |
if image_file:
|
16 |
return image_file
|
17 |
elif image_url:
|
18 |
response = requests.get(image_url)
|
19 |
return Image.open(BytesIO(response.content)).convert("RGB")
|
20 |
-
|
21 |
-
return None
|
22 |
|
23 |
-
def
|
24 |
-
"""
|
25 |
-
Detect text in an image and return annotated image + text coordinates.
|
26 |
-
"""
|
27 |
image = load_image(image_file, image_url)
|
28 |
if image is None:
|
29 |
-
return None, "No image provided."
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
generated_ids = model.generate(pixel_values)
|
34 |
-
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
35 |
|
36 |
-
# For demonstration: bounding box around the full image (TroCR doesn't return coordinates)
|
37 |
-
# For proper coordinates use an OCR model like PaddleOCR or EasyOCR
|
38 |
draw = ImageDraw.Draw(image)
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
return image,
|
44 |
|
45 |
iface = gr.Interface(
|
46 |
-
fn=
|
47 |
inputs=[
|
48 |
gr.Image(type="pil", label="Upload Image"),
|
49 |
gr.Textbox(label="Image URL (optional)")
|
50 |
],
|
51 |
outputs=[
|
52 |
gr.Image(type="pil", label="Annotated Image"),
|
53 |
-
gr.Textbox(label="
|
|
|
54 |
],
|
55 |
-
title="
|
56 |
-
description="
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|
|
|
1 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
2 |
+
import easyocr
|
3 |
from PIL import Image, ImageDraw
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
import requests
|
7 |
from io import BytesIO
|
8 |
+
import json
|
9 |
|
10 |
+
# TrOCR model for recognition
|
11 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
12 |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
13 |
|
14 |
+
# EasyOCR reader for bounding boxes
|
15 |
+
reader = easyocr.Reader(['en'])
|
16 |
+
|
17 |
def load_image(image_file, image_url):
|
|
|
|
|
|
|
18 |
if image_file:
|
19 |
return image_file
|
20 |
elif image_url:
|
21 |
response = requests.get(image_url)
|
22 |
return Image.open(BytesIO(response.content)).convert("RGB")
|
23 |
+
return None
|
|
|
24 |
|
25 |
+
def detect_text_trocr_json(image_file, image_url):
|
|
|
|
|
|
|
26 |
image = load_image(image_file, image_url)
|
27 |
if image is None:
|
28 |
+
return None, "No image provided.", None
|
29 |
|
30 |
+
# Step 1: Detect bounding boxes with EasyOCR
|
31 |
+
results = reader.readtext(np.array(image))
|
|
|
|
|
32 |
|
|
|
|
|
33 |
draw = ImageDraw.Draw(image)
|
34 |
+
words_json = []
|
35 |
+
paragraph_json = []
|
36 |
+
|
37 |
+
for bbox, _, conf in results:
|
38 |
+
x_coords = [point[0] for point in bbox]
|
39 |
+
y_coords = [point[1] for point in bbox]
|
40 |
+
x_min, y_min = min(x_coords), min(y_coords)
|
41 |
+
x_max, y_max = max(x_coords), max(y_coords)
|
42 |
+
|
43 |
+
# Crop each word for recognition
|
44 |
+
word_crop = image.crop((x_min, y_min, x_max, y_max))
|
45 |
+
pixel_values = processor(images=word_crop, return_tensors="pt").pixel_values
|
46 |
+
generated_ids = model.generate(pixel_values)
|
47 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
48 |
+
|
49 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=2)
|
50 |
+
|
51 |
+
words_json.append({
|
52 |
+
"text": text,
|
53 |
+
"bbox": [x_min, y_min, x_max, y_max],
|
54 |
+
"confidence": float(conf)
|
55 |
+
})
|
56 |
+
|
57 |
+
paragraph_json = words_json.copy()
|
58 |
+
|
59 |
+
output_json = {
|
60 |
+
"words": words_json,
|
61 |
+
"paragraphs": paragraph_json
|
62 |
+
}
|
63 |
|
64 |
+
return image, json.dumps(output_json, indent=2), json.dumps(output_json)
|
65 |
|
66 |
iface = gr.Interface(
|
67 |
+
fn=detect_text_trocr_json,
|
68 |
inputs=[
|
69 |
gr.Image(type="pil", label="Upload Image"),
|
70 |
gr.Textbox(label="Image URL (optional)")
|
71 |
],
|
72 |
outputs=[
|
73 |
gr.Image(type="pil", label="Annotated Image"),
|
74 |
+
gr.Textbox(label="Text & Bounding Boxes (JSON)"),
|
75 |
+
gr.File(label="Download JSON")
|
76 |
],
|
77 |
+
title="Handwritten OCR with TrOCR + Bounding Boxes",
|
78 |
+
description="Detect handwritten text and bounding boxes. Uses TrOCR for recognition and EasyOCR for detection."
|
79 |
)
|
80 |
|
81 |
if __name__ == "__main__":
|